skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fulgor: A Fast and Compact k-mer Index for Large-Scale Matching and Color Queries
The problem of sequence identification or matching - determining the subset of reference sequences from a given collection that are likely to contain a short, queried nucleotide sequence - is relevant for many important tasks in Computational Biology, such as metagenomics and pan-genome analysis. Due to the complex nature of such analyses and the large scale of the reference collections a resource-efficient solution to this problem is of utmost importance. This poses the threefold challenge of representing the reference collection with a data structure that is efficient to query, has light memory usage, and scales well to large collections. To solve this problem, we describe how recent advancements in associative, order-preserving, k-mer dictionaries can be combined with a compressed inverted index to implement a fast and compact colored de Bruijn graph data structure. This index takes full advantage of the fact that unitigs in the colored de Bruijn graph are monochromatic (all k-mers in a unitig have the same set of references of origin, or "color"), leveraging the order-preserving property of its dictionary. In fact, k-mers are kept in unitig order by the dictionary, thereby allowing for the encoding of the map from k-mers to their inverted lists in as little as 1+o(1) bits per unitig. Hence, one inverted list per unitig is stored in the index with almost no space/time overhead. By combining this property with simple but effective compression methods for inverted lists, the index achieves very small space. We implement these methods in a tool called Fulgor. Compared to Themisto, the prior state of the art, Fulgor indexes a heterogeneous collection of 30,691 bacterial genomes in 3.8× less space, a collection of 150,000 Salmonella enterica genomes in approximately 2× less space, is at least twice as fast for color queries, and is 2-6 × faster to construct.  more » « less
Award ID(s):
2317838
PAR ID:
10485537
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Belazzougui, Djamal; Ouangraoua, Aïda
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Journal Name:
23rd International Workshop on Algorithms in Bioinformatics (WABI 2023)
Subject(s) / Keyword(s):
k-mers Colored de Bruijn Graph Compression Read-mapping Applied computing → Bioinformatics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The problem of sequence identification or matching—determining the subset of reference sequences from a given collection that are likely to contain a short, queried nucleotide sequence—is relevant for many important tasks in Computational Biology, such as metagenomics and pangenome analysis. Due to the complex nature of such analyses and the large scale of the reference collections a resource-efficient solution to this problem is of utmost importance. This poses the threefold challenge of representing the reference collection with a data structure that is efficient to query, has light memory usage, and scales well to large collections. To solve this problem, we describe an efficientcolored de Bruijngraph index, arising as the combination of ak-mer dictionary with a compressed inverted index. The proposed index takes full advantage of the fact that unitigs in the colored compacted de Bruijn graph aremonochromatic(i.e., allk-mers in a unitig have the same set of references of origin, orcolor). Specifically, the unitigs are kept in the dictionary in color order, thereby allowing for the encoding of the map fromk-mers to their colors in as little as 1 +o(1) bits per unitig. Hence, one color per unitig is stored in the index with almost no space/time overhead. By combining this property with simple but effective compression methods for integer lists, the index achieves very small space. We implement these methods in a tool called , and conduct an extensive experimental analysis to demonstrate the improvement of our tool over previous solutions. For example, compared to —the strongest competitor in terms of index space vs. query time trade-off— requires significantly less space (up to 43% less space for a collection of 150,000Salmonella entericagenomes), is at least twice as fast for color queries, and is 2–6$$\times$$ × faster to construct. 
    more » « less
  2. Abstract A colored de Bruijn graph (also called a set of k-mer sets), is a set of k-mers with every k-mer assigned a set of colors. Colored de Bruijn graphs are used in a variety of applications, including variant calling, genome assembly, and database search. However, their size has posed a scalability challenge to algorithm developers and users. There have been numerous indexing data structures proposed that allow to store the graph compactly while supporting fast query operations. However, disk compression algorithms, which do not need to support queries on the compressed data and can thus be more space-efficient, have received little attention. The dearth of specialized compression tools has been a detriment to tool developers, tool users, and reproducibility efforts. In this paper, we develop a new tool that compresses colored de Bruijn graphs to disk, building on previous ideas for compression of k-mer sets and indexing colored de Bruijn graphs. We test our tool, called ESS-color, on various datasets, including both sequencing data and whole genomes. ESS-color achieves better compression than all evaluated tools and all datasets, with no other tool able to consistently achieve less than 44% space overhead. The software is available athttp://github.com/medvedevgroup/ESSColor. 
    more » « less
  3. null (Ed.)
    Abstract Motivation The construction of the compacted de Bruijn graph from collections of reference genomes is a task of increasing interest in genomic analyses. These graphs are increasingly used as sequence indices for short- and long-read alignment. Also, as we sequence and assemble a greater diversity of genomes, the colored compacted de Bruijn graph is being used more and more as the basis for efficient methods to perform comparative genomic analyses on these genomes. Therefore, time- and memory-efficient construction of the graph from reference sequences is an important problem. Results We introduce a new algorithm, implemented in the tool Cuttlefish, to construct the (colored) compacted de Bruijn graph from a collection of one or more genome references. Cuttlefish introduces a novel approach of modeling de Bruijn graph vertices as finite-state automata, and constrains these automata’s state-space to enable tracking their transitioning states with very low memory usage. Cuttlefish is also fast and highly parallelizable. Experimental results demonstrate that it scales much better than existing approaches, especially as the number and the scale of the input references grow. On a typical shared-memory machine, Cuttlefish constructed the graph for 100 human genomes in under 9 h, using ∼29 GB of memory. On 11 diverse conifer plant genomes, the compacted graph was constructed by Cuttlefish in under 9 h, using ∼84 GB of memory. The only other tool completing these tasks on the hardware took over 23 h using ∼126 GB of memory, and over 16 h using ∼289 GB of memory, respectively. Availability and implementation Cuttlefish is implemented in C++14, and is available under an open source license at https://github.com/COMBINE-lab/cuttlefish. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. The colored de Bruijn graph (cdbg) and its variants have become an important combinatorial structure used in numerous areas in genomics, such as population-level variation detection in metagenomic samples, large scale sequence search, and cdbg-based reference sequence indices. As samples or genomes are added to the cdbg, the color information comes to dominate the space required to represent this data structure. In this paper, we show how to represent the color information efficiently by adopting a hierarchical encoding that exploits correlations among color classes—patterns of color occurrence—present in the de Bruijn graph (dbg). A major challenge in deriving an efficient encoding of the color information that takes advantage of such correlations is determining which color classes are close to each other in the high-dimensional space of possible color patterns. We demonstrate that the dbg itself can be used as an efficient mechanism to search for approximate nearest neighbors in this space. While our approach reduces the encoding size of the color information even for relatively small cdbgs (hundreds of experiments), the gains are particularly consequential as the number of potential colors (i.e. samples or references) grows into the thousands. We apply this encoding in the context of two different applications; the implicit cdbg used for a large-scale sequence search index, Mantis, as well as the encoding of color information used in population-level variation detection by tools such as Vari and Rainbowfish. Our results show significant improvements in the overall size and scalability of representation of the color information. In our experiment on 10,000 samples, we achieved more than 11× better compression compared to RRR. 
    more » « less
  5. Graph based non-linear reference structures such as variation graphs and colored de Bruijn graphs enable incorporation of full genomic diversity within a population. However, transitioning from a simple string-based reference to graphs requires addressing many computational challenges, one of which concerns accurately mapping sequencing read sets to graphs. Paired-end Illumina sequencing is a commonly used sequencing platform in genomics, where the paired-end distance constraints allow disambiguation of repeats. Many recent works have explored provably good index-based and alignment-based strategies for mapping individual reads to graphs. However, validating distance constraints efficiently over graphs is not trivial, and existing sequence to graph mappers rely on heuristics. We introduce a mathematical formulation of the problem, and provide a new algorithm to solve it exactly. We take advantage of the high sparsity of reference graphs, and use sparse matrix-matrix multiplications (SpGEMM) to build an index which can be queried efficiently by a mapping algorithm for validating the distance constraints. Effectiveness of the algorithm is demonstrated using real reference graphs, including a human MHC variation graph, and a pan-genome de-Bruijn graph built using genomes of 20 B. anthracis strains. While the one-time indexing time can vary from a few minutes to a few hours using our algorithm, answering a million distance queries takes less than a second. 
    more » « less