Abstract The Diaprepes root weevil (DRW), Diaprepes abbreviatus, is a broadly polyphagous invasive pest of agriculture in the southern United States and the Caribbean. Its genome was sequenced, assembled, and annotated to study genomic correlates of specialized plant-feeding and invasiveness and to facilitate the development of new methods for DRW control. The 1.69 Gb D. abbreviatus genome assembly was distributed across 653 contigs, with an N50 of 7.8 Mb and the largest contig of 62 Mb. Most of the genome was comprised of repetitive sequences, with 66.17% in transposable elements, 5.75% in macrosatellites, and 2.06% in microsatellites. Most expected orthologous genes were present and fully assembled, with 99.5% of BUSCO genes present and 1.5% duplicated. One hundred and nine contigs (27.19 Mb) were identified as putative fragments of the X and Y sex chromosomes, and homology assessment with other beetle X chromosomes indicated a possible sex chromosome turnover event. Genome annotation identified 18,412 genes, including 43 putative horizontally transferred (HT) loci. Notably, 258 genes were identified from gene families known to encode plant cell wall degrading enzymes and invertases, including carbohydrate esterases, polysaccharide lyases, and glycoside hydrolases (GH). GH genes were unusually numerous, with 239 putative genes representing 19 GH families. Interestingly, several other beetle species with large numbers of GH genes are (like D. abbreviatus) successful invasive pests of agriculture or forestry. 
                        more » 
                        « less   
                    
                            
                            A chromosomal-scale reference genome of the New World Screwworm, Cochliomyia hominivorax
                        
                    
    
            Abstract The New World Screwworm, Cochliomyia hominivorax (Calliphoridae), is the most important myiasis-causing species in America. Screwworm myiasis is a zoonosis that can cause severe lesions in livestock, domesticated and wild animals, and occasionally in people. Beyond the sanitary problems associated with this species, these infestations negatively impact economic sectors, such as the cattle industry. Here, we present a chromosome-scale assembly of C. hominivorax’s genome, organized in 6 chromosome-length and 515 unplaced scaffolds spanning 534 Mb. There was a clear correspondence between the D. melanogaster linkage groups A–E and the chromosomal-scale scaffolds. Chromosome quotient (CQ) analysis identified a single scaffold from the X chromosome that contains most of the orthologs of genes that are on the D. melanogaster fourth chromosome (linkage group F or dot chromosome). CQ analysis also identified potential X and Y unplaced scaffolds and genes. Y-linkage for selected regions was confirmed by PCR with male and female DNA. Some of the long chromosome-scale scaffolds include Y-linked sequences, suggesting misassembly of these regions. These resources will provide a basis for future studies aiming at understanding the biology and evolution of this devastating obligate parasite. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2030345
- PAR ID:
- 10485548
- Publisher / Repository:
- Oxford
- Date Published:
- Journal Name:
- DNA Research
- Volume:
- 30
- Issue:
- 1
- ISSN:
- 1340-2838
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Pyhäjärvi, T (Ed.)Abstract Blackberries (Rubus spp.) are the fourth most economically important berry crop worldwide. Genome assemblies and annotations have been developed for Rubus species in subgenus Idaeobatus, including black raspberry (R. occidentalis), red raspberry (R. idaeus), and R. chingii, but very few genomic resources exist for blackberries and their relatives in subgenus Rubus. Here we present a chromosome-length assembly and annotation of the diploid blackberry germplasm accession “Hillquist” (R. argutus). “Hillquist” is the only known source of primocane-fruiting (annual-fruiting) in tetraploid fresh-market blackberry breeding programs and is represented in the pedigree of many important cultivars worldwide. The “Hillquist” assembly, generated using Pacific Biosciences long reads scaffolded with high-throughput chromosome conformation capture sequencing, consisted of 298 Mb, of which 270 Mb (90%) was placed on 7 chromosome-length scaffolds with an average length of 38.6 Mb. Approximately 52.8% of the genome was composed of repetitive elements. The genome sequence was highly collinear with a novel maternal haplotype-resolved linkage map of the tetraploid blackberry selection A-2551TN and genome assemblies of R. chingii and red raspberry. A total of 38,503 protein-coding genes were predicted, of which 72% were functionally annotated. Eighteen flowering gene homologs within a previously mapped locus aligning to an 11.2 Mb region on chromosome Ra02 were identified as potential candidate genes for primocane-fruiting. The utility of the “Hillquist” genome has been demonstrated here by the development of the first genotyping-by-sequencing-based linkage map of tetraploid blackberry and the identification of possible candidate genes for primocane-fruiting. This chromosome-length assembly will facilitate future studies in Rubus biology, genetics, and genomics and strengthen applied breeding programs.more » « less
- 
            The rapid evolution of repetitive DNA sequences, including satellite DNA, tandem duplications, and transposable elements, underlies phenotypic evolution and contributes to hybrid incompatibilities between species. However, repetitive genomic regions are fragmented and misassembled in most contemporary genome assemblies. We generated highly contiguous de novo reference genomes for the Drosophila simulans species complex ( D. simulans , D. mauritiana , and D. sechellia ), which speciated ∼250,000 yr ago. Our assemblies are comparable in contiguity and accuracy to the current D. melanogaster genome, allowing us to directly compare repetitive sequences between these four species. We find that at least 15% of the D. simulans complex species genomes fail to align uniquely to D. melanogaster owing to structural divergence—twice the number of single-nucleotide substitutions. We also find rapid turnover of satellite DNA and extensive structural divergence in heterochromatic regions, whereas the euchromatic gene content is mostly conserved. Despite the overall preservation of gene synteny, euchromatin in each species has been shaped by clade- and species-specific inversions, transposable elements, expansions and contractions of satellite and tRNA tandem arrays, and gene duplications. We also find rapid divergence among Y-linked genes, including copy number variation and recent gene duplications from autosomes. Our assemblies provide a valuable resource for studying genome evolution and its consequences for phenotypic evolution in these genetic model species.more » « less
- 
            Vogel, K (Ed.)Abstract Insect pests can rapidly accumulate in number and thrive in diverse environments, making them valuable models for studying phenotypic plasticity and the genetic basis of local adaptation. The mountain pine beetle (Dendroctonus ponderosae) is a major forest pest, and adult body size and generation time are 2 traits that vary among populations and directly influence reproductive success and outbreak dynamics. To identify regions of the genome linked to these 2 traits, we generated double-digest RAD sequencing data from an F2 intercross, using populations from 2 Y haplogroups with phenotypic and genetic differences in these traits. A high-density linkage map was generated and QTL analyses performed. We identified a single large effect QTL for generation time, associated with an adult diapause. The QTL spans the entire X chromosome, peaking over the evolutionarily conserved portion of the X. We were unable to detect a significant QTL for body size. Our linkage map identified putative inversions shared by parents that are absent in the published reference genome, with 3 putative inversions on chromosomes 2, 3, and the X. We also detected extensive regions of low recombination that were associated with low gene density, indicative of large pericentromeric regions. Surprisingly, we found that in our cross, F2 males inherited X chromosomes with significantly fewer crossover events than F2 females. Our findings provide information about the recombination landscape, the sex-biased inheritance of recombined X's, and the genomic location of a key trait in a major forest pest.more » « less
- 
            Abstract BackgroundSex determination occurs across animal species, but most of our knowledge about its mechanisms comes from only a handful of bilaterian taxa. This limits our ability to infer the evolutionary history of sex determination within animals. ResultsIn this study, we generated a linkage map of the genome of the colonial cnidarianHydractinia symbiolongicarpusand used it to demonstrate that this species has an XX/XY sex determination system. We demonstrate that the X and Y chromosomes have pseudoautosomal and non-recombining regions. We then use the linkage map and a method based on the depth of sequencing coverage to identify genes encoded in the non-recombining region and show that many of them have male gonad-specific expression. In addition, we demonstrate that recombination rates are enhanced in the female genome and that the haploid chromosome number inHydractiniaisn = 15. ConclusionsThese findings establishHydractiniaas a tractable non-bilaterian model system for the study of sex determination and the evolution of sex chromosomes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    