skip to main content

Title: Star Formation Efficiency in Nearby Galaxies Revealed with a New CO-to-H 2 Conversion Factor Prescription

Determining how the galactic environment, especially the high gas densities and complex dynamics in bar-fed galaxy centers, alters the star formation efficiency (SFE) of molecular gas is critical to understanding galaxy evolution. However, these same physical or dynamical effects also alter the emissivity properties of CO, leading to variations in the CO-to-H2conversion factor (αCO) that impact the assessment of the gas column densities and thus of the SFE. To address such issues, we investigate the dependence ofαCOon the local CO velocity dispersion at 150 pc scales using a new set of dust-basedαCOmeasurements and propose a newαCOprescription that accounts for CO emissivity variations across galaxies. Based on this prescription, we estimate the SFE in a sample of 65 galaxies from the PHANGS–Atacama Large Millimeter/submillimeter Array survey. We find increasing SFE toward high-surface-density regions like galaxy centers, while using a constant or metallicity-basedαCOresults in a more homogeneous SFE throughout the centers and disks. Our prescription further reveals a mean molecular gas depletion time of 700 Myr in the centers of barred galaxies, which is overall three to four times shorter than in nonbarred galaxy centers or the disks. Across the galaxy disks, the depletion time is consistently around 2–3 Gyr, regardless of the choice ofαCOprescription. All together, our results suggest that the high level of star formation activity in barred centers is not simply due to an increased amount of molecular gas, but also to an enhanced SFE compared to nonbarred centers or disk regions.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Medium: X Size: Article No. 42
["Article No. 42"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Large-scale bars can fuel galaxy centers with molecular gas, often leading to the development of dense ringlike structures where intense star formation occurs, forming a very different environment compared to galactic disks. We pair ∼0.″3 (30 pc) resolution new JWST/MIRI imaging with archival ALMA CO(2–1) mapping of the central ∼5 kpc of the nearby barred spiral galaxy NGC 1365 to investigate the physical mechanisms responsible for this extreme star formation. The molecular gas morphology is resolved into two well-known bright bar lanes that surround a smooth dynamically cold gas disk (Rgal∼ 475 pc) reminiscent of non-star-forming disks in early-type galaxies and likely fed by gas inflow triggered by stellar feedback in the lanes. The lanes host a large number of JWST-identified massive young star clusters. We find some evidence for temporal star formation evolution along the ring. The complex kinematics in the gas lanes reveal strong streaming motions and may be consistent with convergence of gas streamlines expected there. Indeed, the extreme line widths are found to be the result of inter-“cloud” motion between gas peaks;ScousePydecomposition reveals multiple components with line widths of 〈σCO,scouse〉 ≈ 19 km s−1and surface densities ofΣH2,scouse800Mpc2, similar to the properties observed throughout the rest of the central molecular gas structure. Tailored hydrodynamical simulations exhibit many of the observed properties and imply that the observed structures are transient and highly time-variable. From our study of NGC 1365, we conclude that it is predominantly the high gas inflow triggered by the bar that is setting the star formation in its CMZ.

    more » « less
  2. Abstract

    We present a12CO(J= 2−1) survey of 60 local galaxies using data from the Atacama Compact Array as part of the Extragalactic Database for Galaxy Evolution: the ACA EDGE survey. These galaxies all have integral field spectroscopy from the CALIFA survey. Compared to other local galaxy surveys, ACA EDGE is designed to mitigate selection effects based on CO brightness and morphological type. Of the 60 galaxies in ACA EDGE, 36 are on the star formation main sequence, 13 are on the red sequence, and 11 lie in the “green valley” transition between these sequences. We test how star formation quenching processes affect the star formation rate (SFR) per unit molecular gas mass, SFEmol= SFR/Mmol, and related quantities in galaxies with stellar masses 10 ≤ log[M/M] ≤ 11.5 covering the full range of morphological types. We observe a systematic decrease of the molecular-to-stellar mass fraction (Rmol) with a decreasing level of star formation activity, with green valley galaxies also having lower SFEmolthan galaxies on the main sequence. On average, we find that the spatially resolved SFEmolwithin the bulge region of green valley galaxies is lower than in the bulges of main-sequence galaxies if we adopt a constant CO-to-H2conversion factor,αCO. While efficiencies in main-sequence galaxies remain almost constant with galactocentric radius, in green valley galaxies, we note a systematic increase of SFEmol,Rmol, and specific SFR with increasing radius. As shown in previous studies, our results suggest that although gas depletion (or removal) seems to be the most important driver of the star formation quenching in galaxies transiting through the green valley, a reduction in star formation efficiency is also required during this stage.

    more » « less
  3. High-redshift dusty star-forming galaxies with very high star formation rates (500−3000 M ⊙ yr −1 ) are key to understanding the formation of the most extreme galaxies in the early Universe. Characterising the gas reservoir of these systems can reveal the driving factor behind the high star formation. Using molecular gas tracers such as, high- J CO lines, neutral carbon lines, and the dust continuum, we can estimate the gas density and radiation field intensity in their interstellar media. In this paper, we present high resolution (∼0.4″) observations of CO(7−6), [CI](2−1), and dust continuum of three lensed galaxies from the South pole telescope – sub-millimetre galaxies (SPT-SMG) sample at z  ∼ 3 with the Atacama Large Millimetre/submillimetre Array. Our sources have high intrinsic star formation rates (> 850 M ⊙ yr −1 ) and rather short depletion timescales (< 100 Myr). Based on the L [CI](2−1) / L CO(7 − 6) and L [CI](2−1) / L IR ratios, our galaxy sample has similar radiation field intensities and gas densities compared to other submillimetre galaxies. We performed visibility-based lens modelling on these objects to reconstruct the kinematics in the source plane. We find that the cold gas masses of the sources are compatible with simple dynamical mass estimates using ULIRG-like values of the CO-H 2 conversion factor α CO , but not Milky Way-like values. We find diverse source kinematics in our sample: SPT0103−45 and SPT2147−50 are likely rotating disks, while SPT2357−51 is possibly a major merger. The analysis presented in the paper could be extended to a larger sample to determine better statistics of morphologies and interstellar medium properties of high- z dusty star-forming galaxies. 
    more » « less
  4. Abstract The CO-to-H 2 conversion factor ( α CO ) is critical to studying molecular gas and star formation in galaxies. The value of α CO has been found to vary within and between galaxies, but the specific environmental conditions that cause these variations are not fully understood. Previous observations on ~kiloparsec scales revealed low values of α CO in the centers of some barred spiral galaxies, including NGC 3351. We present new Atacama Large Millimeter/submillimeter Array Band 3, 6, and 7 observations of 12 CO, 13 CO, and C 18 O lines on 100 pc scales in the inner ∼2 kpc of NGC 3351. Using multiline radiative transfer modeling and a Bayesian likelihood analysis, we infer the H 2 density, kinetic temperature, CO column density per line width, and CO isotopologue abundances on a pixel-by-pixel basis. Our modeling implies the existence of a dominant gas component with a density of 2–3 × 10 3 cm −3 in the central ∼1 kpc and a high temperature of 30–60 K near the nucleus and near the contact points that connect to the bar-driven inflows. Assuming a CO/H 2 abundance of 3 × 10 −4 , our analysis yields α CO ∼ 0.5–2.0 M ⊙ (K km s −1 pc 2 ) −1 with a decreasing trend with galactocentric radius in the central ∼1 kpc. The inflows show a substantially lower α CO ≲ 0.1 M ⊙ (K km s −1 pc 2 ) −1 , likely due to lower optical depths caused by turbulence or shear in the inflows. Over the whole region, this gives an intensity-weighted α CO of ∼1.5 M ⊙ (K km s −1 pc 2 ) −1 , which is similar to previous dust-modeling-based results at kiloparsec scales. This suggests that low α CO on kiloparsec scales in the centers of some barred galaxies may be due to the contribution of low-optical-depth CO emission in bar-driven inflows. 
    more » « less
  5. Abstract

    We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are9.35.4+4.6and4.22.0+1.9Mpc2(Kkms1)1, respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength (U¯). Among them,U¯, ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity,U¯, and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relationsαCO(21)Σ0.5andαCO(10)Σ0.2. The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors.

    more » « less