skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High sexual display trait diversity without measured genetic divergence in a montane hybrid zone involving young species ( Habronattus americanus subgroup, Araneae: Salticidae)
Abstract Genetic introgression, allele exchange across species boundaries, is a commonly recognized feature of animal evolution. Under such a paradigm, contemporary contact zones provide first-hand insight into the geographic, phenotypic, and genetic details of introgression. Also, when mate choice phenotypes are conspicuous and variable in hybrids, contact zones provide potential insight into how sexual selection interacts with species boundary maintenance, particularly when postzygotic reproductive isolation is weak. The Habronattus americanus subgroup includes several recently evolved jumping spider species, with an estimated age of about 200,000 yr, and substantial evidence for hybridization and introgression. We explored a contact zone involving H. americanus (Keyserling, 1885) and H. kubai (Griswold, 1979) on Mount Shasta, CA, in alpine habitats that would have been unavailable (under ice) at the Last Glacial Maximum. We characterized morphological diversity within the contact zone, including the fine-scale geographic distribution of hybrid and parental individuals, and assessed genetic variation using ddRADseq data. Combined results indicate a lack of measured genomic differentiation between specimens with distinct morphologies, including individuals with phenotypes of the parental species. We identified a diverse array of hybrid morphologies, with phenotypic evidence for backcrossing, essentially forming a phenotypic bridge between parental taxa. The study area is characterized by more hybrid than parental individuals, with a significantly larger number of red-palped morphologies than white- and/or yellow-palped morphologies; the novel, white-palped phenotype is perhaps transgressive. Overall, these results contribute to a better understanding of the expected ebb and flow of lineage interactions during the early stages of speciation.  more » « less
Award ID(s):
1754591
PAR ID:
10485625
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Insect Systematics and Diversity
Volume:
8
Issue:
1
ISSN:
2399-3421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Coalescent modelling of hybrid zones can provide novel insights into the historical demography of populations, including divergence times, population sizes, introgression proportions, migration rates and the timing of hybrid zone formation. We used coalescent analysis to determine whether the hybrid zone between phylogeographic lineages of the Plateau Fence Lizard (Sceloporus tristichus) in Arizona formed recently due to human‐induced landscape changes, or if it originated during Pleistocene climatic shifts. Given the presence of mitochondrial DNA from another species in the hybrid zone (Southwestern Fence Lizard,S. cowlesi), we tested for the presence ofS. cowlesinuclear DNA in the hybrid zone as well as reassessed the species boundary betweenS. tristichusandS. cowlesi. No evidence ofS. cowlesinuclear DNA is found in the hybrid zone, and the paraphyly of both species raises concerns about their taxonomic validity. Introgression analysis placed the divergence time between the parental hybrid zone populations at approximately 140 kya and their secondary contact and hybridization at approximately 11 kya at the end of the Pleistocene. Introgression proportions estimated for hybrid populations are correlated with their geographic distance from parental populations. The multispecies coalescent with migration provided significant support for unidirectional migration moving from south to north, which is consistent with spatial cline analyses that suggest a slow but steady northward shift of the centre of the hybrid zone over the last two decades. When analysing hybrid populations sampled along a linear transect, coalescent methods can provide novel insights into hybrid zone dynamics. 
    more » « less
  2. null (Ed.)
    Introgressive hybridization can be a powerful force impacting patterns of evolution at multiple taxonomic levels. We aimed to understand how introgression has affected speciation and diversification within a species complex of jumping spiders. The Habronattus americanus subgroup is a recently radiating group of jumping spiders, with species now in contact after hypothesized periods of isolation during glaciation cycles of the Pleistocene. Effects of introgression on genomes and morphology were investigated using phylogenomic and clustering methods using RADseq, ultraconserved elements (UCEs), and morphological data. We characterized 14 unique species/morphs using non-metric multidimensional scaling of morphological data, a majority of which were not recovered as monophyletic in our phylogenomic analyses. Morphological clusters and genetic lineages are highly incongruent, such that geographic region was a greater predictor of phylogenetic relatedness and genomic similarity than species or morph identity. STRUCTURE analyses support this pattern, revealing clusters corresponding to larger geographic regions. A history of rapid radiation in combination with frequent introgression seems to have mostly homogenized the genomes of species in this system, while selective forces maintain distinct male morphologies. GEMMA analyses support this idea by identifying SNPs correlated with distinct male morphologies. Overall, we have uncovered a system at odds with a typical bifurcating evolutionary model, instead supporting one where closely related species evolve together connected through multiple introgression events, creating a reticulate evolutionary history. 
    more » « less
  3. Abstract Hybrid zones are natural experiments for the study of avian evolution. Hybrid zones can be dynamic, moving as species adjust to new climates and habitats, with unknown implications for species and speciation. There are relatively few studies that have comparable modern and historic sampling to assess change in hybrid zone location and width over time, and those studies have generally found mixed results, with many hybrid zones showing change over time, but others showing stability. The white‐throated magpie‐jay (Calocitta formosa) and black‐throated magpie‐jay (Calocitta colliei) occur along the western coast of Mexico and Central America. The two species differ markedly in throat color and tail length, and prior observation suggests a narrow hybrid zone in southern Jalisco where individuals have mixed throat color. This study aims to assess the existence and temporal stability of this putative hybrid zone by comparing throat color between georeferenced historical museum specimens and modern photos from iNaturalist with precise locality information. Our results confirm the existence of a narrow hybrid zone in Jalisco, with modern throat scores gradually increasing from the parental ends of the cline toward the cline center in a sigmoidal curve characteristic of hybrid zones. Our temporal comparison suggests that the hybrid zone has not shifted its position between historical (pre‐1973) and modern (post‐2005) time periods—a surprising result given the grand scale of habitat change to the western Mexican lowlands during this time. An anomalous pocket of white‐throated individuals in the northern range of the black‐throated magpie‐jay hints at the possibility of prehistorical long‐distance introduction. Future genomic data will help disentangle the evolutionary history of these lineages and better characterize how secondary contact is affecting both the DNA and the phenotype of these species. 
    more » « less
  4. Abstract Co-adaptation of cytoplasmic and nuclear genomes are critical to physiological function for many species. Despite this understanding, hybridization can disrupt co-adaptation leading to a mismatch between maternally-inherited cytoplasmic genomes and biparentally inherited nuclear genomes. Few studies have examined the consequences of cytonuclear interactions to physiological function across environments. Here, we quantify the degree of co-introgression between chloroplast and nuclear-chloroplast (N-cp) genes across repeated hybrid zones and its consequences to physiological function across environments. We use whole-genome resequencing and common garden experiments with clonally replicated genotypes sampled across the natural hybrid zone betweenPopulus trichocarpaandP. balsamifera. We use geographic clines to test for co-introgression of the chloroplast genome with N-cp and non-interacting nuclear genes. Co-introgression of chloroplast and N-cp genes was limited although contact zone-specific patterns suggest that local environments may influence co-introgression. Combining ancestry estimates with phenotypic data across common gardens revealed that mismatches between chloroplast and nuclear ancestry can influence physiological performance, but the strength and direction of these effects vary depending on the environment. Overall, this study highlights the importance of cytonuclear interactions to adaptation, and the role of environment in modifying the effect of those interactions. 
    more » « less
  5. Abstract Hybrid zones can be studied by modeling clines of trait variation (e.g., morphology, genetics) over a linear transect. Yet, hybrid zones can also be spatially complex, can shift over time, and can even lead to the formation of hybrid lineages with the right combination of dispersal and vicariance. We reassessed Sibley’s (1950) gradient between Collared Towhee (Pipilo ocai) and Spotted Towhee (Pipilo maculatus) in Central Mexico to test whether it conformed to a typical tension-zone cline model. By comparing historical and modern data, we found that cline centers for genetic and phenotypic traits have not shifted over the course of 70 years. This equilibrium suggests that secondary contact between these species, which originally diverged over 2 million years ago, likely dates to the Pleistocene. Given the amount of mtDNA divergence, parental ends of the cline have very low autosomal nuclear differentiation (FST = 0.12). Dramatic and coincident cline shifts in mtDNA and throat color suggest the possibility of sexual selection as a factor in differential introgression, while a contrasting cline shift in green back color hints at a role for natural selection. Supporting the idea of a continuum between clinal variation and hybrid lineage formation, the towhee gradient can be analyzed as one population under isolation-by-distance, as a two-population cline, and as three lineages experiencing divergence with gene flow. In the middle of the gradient, a hybrid lineage has become partly isolated, likely due to forested habitat shrinking and fragmenting as it moved upslope after the last glacial maximum and a stark environmental transition. This towhee system offers a window into the potential outcomes of hybridization across a dynamic landscape including the creation of novel genomic and phenotypic combinations and incipient hybrid lineages. 
    more » « less