skip to main content


Title: In situ transformation of ethoxylate and glycol surfactants by shale-colonizing microorganisms during hydraulic fracturing
Abstract

In the last decade, extensive application of hydraulic fracturing technologies to unconventional low-permeability hydrocarbon-rich formations has significantly increased natural-gas production in the United States and abroad. The injection of surface-sourced fluids to generate fractures in the deep subsurface introduces microbial cells and substrates to low-permeability rock. A subset of injected organic additives has been investigated for their ability to support biological growth in shale microbial community members; however, to date, little is known on how complex xenobiotic organic compounds undergo biotransformations in this deep rock ecosystem. Here, high-resolution chemical, metagenomic, and proteomic analyses reveal that widely-used surfactants are degraded by the shale-associated taxa Halanaerobium, both in situ and under laboratory conditions. These halotolerant bacteria exhibit surfactant substrate specificities, preferring polymeric propoxylated glycols (PPGs) and longer alkyl polyethoxylates (AEOs) over polyethylene glycols (PEGs) and shorter AEOs. Enzymatic transformation occurs through repeated terminal-end polyglycol chain shortening during co-metabolic growth through the methylglyoxal bypass. This work provides the first evidence that shale microorganisms can transform xenobiotic surfactants in fracture fluid formulations, potentially affecting the efficiency of hydrocarbon recovery, and demonstrating an important association between injected substrates and microbial growth in an engineered subsurface ecosystem.

 
more » « less
NSF-PAR ID:
10485631
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
13
Issue:
11
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 2690-2700
Size(s):
p. 2690-2700
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Microbial colonization of subsurface shales following hydraulic fracturing offers the opportunity to study coupled biotic and abiotic factors that impact microbial persistence in engineered deep subsurface ecosystems. Shale formations underly much of the continental USA and display geographically distinct gradients in temperature and salinity. Complementing studies performed in eastern USA shales that contain brine-like fluids, here we coupled metagenomic and metabolomic approaches to develop the first genome-level insights into ecosystem colonization and microbial community interactions in a lower-salinity, but high-temperature western USA shale formation. Results We collected materials used during the hydraulic fracturing process (i.e., chemicals, drill muds) paired with temporal sampling of water produced from three different hydraulically fractured wells in the STACK ( S ooner T rend A nadarko Basin, C anadian and K ingfisher) shale play in OK, USA. Relative to other shale formations, our metagenomic and metabolomic analyses revealed an expanded taxonomic and metabolic diversity of microorganisms that colonize and persist in fractured shales. Importantly, temporal sampling across all three hydraulic fracturing wells traced the degradation of complex polymers from the hydraulic fracturing process to the production and consumption of organic acids that support sulfate- and thiosulfate-reducing bacteria. Furthermore, we identified 5587 viral genomes and linked many of these to the dominant, colonizing microorganisms, demonstrating the key role that viral predation plays in community dynamics within this closed, engineered system. Lastly, top-side audit sampling of different source materials enabled genome-resolved source tracking, revealing the likely sources of many key colonizing and persisting taxa in these ecosystems. Conclusions These findings highlight the importance of resource utilization and resistance to viral predation as key traits that enable specific microbial taxa to persist across fractured shale ecosystems. We also demonstrate the importance of materials used in the hydraulic fracturing process as both a source of persisting shale microorganisms and organic substrates that likely aid in sustaining the microbial community. Moreover, we showed that different physicochemical conditions (i.e., salinity, temperature) can influence the composition and functional potential of persisting microbial communities in shale ecosystems. Together, these results expand our knowledge of microbial life in deep subsurface shales and have important ramifications for management and treatment of microbial biomass in hydraulically fractured wells. 
    more » « less
  2. Abstract

    Target subsurface reservoirs for emerging low‐carbon energy technologies and geologic carbon sequestration typically have low permeability and thus rely heavily on fluid transport through natural and induced fracture networks. Sustainable development of these systems requires deeper understanding of how geochemically mediated deformation impacts fracture microstructure and permeability evolution, particularly with respect to geochemical reactions between pore fluids and the host rock. In this work, a series of triaxial direct shear experiments was designed to evaluate how fractures generated at subsurface conditions respond to penetration of reactive fluids with a focus on the role of mineral precipitation. Calcite‐rich shale cores were directly sheared under 3.5 MPa confining pressure using BaCl2‐rich solutions as a working fluid. Experiments were conducted within an X‐ray computed tomography (xCT) scanner to capture 4‐D evolution of fracture geometry and precipitate growth. Three shear tests evidenced nonuniform precipitation of barium carbonates (BaCO3) along through‐going fractures, where the extent of precipitation increased with increasing calcite content. Precipitates were strongly localized within fracture networks due to mineral, geochemical, and structural heterogeneities and generally concentrated in smaller apertures where rock:water ratios were highest. The combination of elevated fluid saturation and reactive surface area created in freshly activated fractures drove near‐immediate mineral precipitation that led to an 80% permeability reduction and significant flow obstruction in the most reactive core. While most previous studies have focused on mixing‐induced precipitation, this work demonstrates that fluid–rock interactions can trigger precipitation‐induced permeability alterations that can initiate or mitigate risks associated with subsurface energy systems.

     
    more » « less
  3. Hydraulic fracturing requires the injection of large volumes of fluid to extract oil and gas from low permeability unconventional resources ( e.g. , shale, coalbed methane), resulting in the production of large volumes of highly complex and variable waste fluids. Shale gas fluid samples were collected from two hydraulically fractured wells in Morgantown, WV, USA at the Marcellus Shale Energy and Environment Laboratory (MSEEL) and analyzed using ultrahigh resolution mass spectrometry to investigate the dissolved organic sulfur (DOS) pool. Using a non-targeted approach, ions assigned DOS formulas were analyzed to identify dominant DOS classes, describe their temporal trends and their implications, and describe the molecular characteristics of the larger DOS pool. The average molecular weight of organic sulfur compounds in flowback decreased and was lowest in produced waters. The dominant DOS classes were putatively assigned to alcohol sulfate and alcohol ethoxysulfate surfactants, likely injected as fracturing fluid additives, on the basis of exact mass and homolog distribution matching. This DOS signature was identifiable 10 months after the initial injection of hydraulic fracturing fluid, and an absence of genes that code for alcohol ethoxysulfate degrading proteins ( e.g. , sulfatases) in the shale well genomes and metagenomes support that these additives are not readily degraded biologically and may continue to act as a chemical signature of the injected fluid. Understanding the diversity, lability, and fate of organic sulfur compounds in shale wells is important for engineering productive wells and preventing gas souring as well as understanding the consequences of unintended fluid release to the environment. The diversity of DOS, particularly more polar compounds, needs further investigation to determine if the identified characteristics and temporal patterns are unique to the analyzed wells or represent broader patterns found in other formations and under other operating conditions. 
    more » « less
  4. Abstract

    How subsurface microbial life changed at the bottom of the kilometers‐deep (hypo) Critical Zone in response to evolving surface conditions over geologic time is an open question. This study investigates the burial and exhumation, biodegradation, and fluid circulation history of hydrocarbon reservoirs across the Colorado Plateau as a window into the hypo‐Critical Zone. Hydrocarbon reservoirs, in the Paradox and Uinta basins, were deeply buried starting ca. 100 to 60 Ma, reaching temperatures >80–140°C, likely sterilizing microbial communities present since the deposition of sediments. High salinities associated with evaporites may have further limited microbial activity. Upward migration of hydrocarbons from shale source rocks into shallower reservoirs during maximum burial set the stage for microbial re‐introduction by creating organic‐rich “hot spots.” Denudation related to the incision of the Colorado River over the past few million years brought reservoirs closer to the surface under cooler temperatures, enhanced deep meteoric water circulation and flushing of saline fluids, and likely re‐inoculated more permeable sediments up to several km depth. Modern‐ to paleo‐hydrocarbon reservoirs show molecular and isotopic evidence of anaerobic oxidation of hydrocarbons coupled to bacterial sulfate reduction in areas with relatively high SO4‐fluxes. Anaerobic oil biodegradation rates are high enough to explain the removal of at least some portion of postulated “supergiant oil fields” across the Colorado Plateau by microbial activity over the past several million years. Results from this study help constrain the lower limits of the hypo‐Critical Zone and how it evolved over geologic time, in response to changing geologic, hydrologic, and biologic forcings.

     
    more » « less
  5. Lloyd, Karen G. (Ed.)
    ABSTRACT The ecological drivers that concurrently act upon both a virus and its host and that drive community assembly are poorly understood despite known interactions between viral populations and their microbial hosts. Hydraulically fractured shale environments provide access to a closed ecosystem in the deep subsurface where constrained microbial and viral community assembly processes can be examined. Here, we used metagenomic analyses of time-resolved-produced fluid samples from two wells in the Appalachian Basin to track viral and host dynamics and to investigate community assembly processes. Hypersaline conditions within these ecosystems should drive microbial community structure to a similar configuration through time in response to common osmotic stress. However, viral predation appears to counterbalance this potentially strong homogeneous selection and pushes the microbial community toward undominated assembly. In comparison, while the viral community was also influenced by substantial undominated processes, it assembled, in part, due to homogeneous selection. When the overall assembly processes acting upon both these communities were directly compared with each other, a significant relationship was revealed, suggesting an association between microbial and viral community development despite differing selective pressures. These results reveal a potentially important balance of ecological dynamics that must be in maintained within this deep subsurface ecosystem in order for the microbial community to persist over extended time periods. More broadly, this relationship begins to provide knowledge underlying metacommunity development across trophic levels. IMPORTANCE Interactions between viral communities and their microbial hosts have been the subject of many recent studies in a wide range of ecosystems. The degree of coordination between ecological assembly processes influencing viral and microbial communities, however, has been explored to a much lesser degree. By using a combined null modeling approach, this study investigated the ecological assembly processes influencing both viral and microbial community structure within hydraulically fractured shale environments. Among other results, significant relationships between the structuring processes affecting both the viral and microbial community were observed, indicating that ecological assembly might be coordinated between these communities despite differing selective pressures. Within this deep subsurface ecosystem, these results reveal a potentially important balance of ecological dynamics that must be maintained to enable long-term microbial community persistence. More broadly, this relationship begins to provide insight into the development of communities across trophic levels. 
    more » « less