skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uncultured Nitrospina -like species are major nitrite oxidizing bacteria in oxygen minimum zones
Abstract Oxygen minimum zones (OMZs) are marine regions where O2 is undetectable at intermediate depths. Within OMZs, the oxygen-depleted zone (ODZ) induces anaerobic microbial processes that lead to fixed nitrogen loss via denitrification and anammox. Surprisingly, nitrite oxidation is also detected in ODZs, although all known marine nitrite oxidizers (mainly Nitrospina) are aerobes. We used metagenomic binning to construct metagenome-assembled genomes (MAGs) of nitrite oxidizers from OMZs. These MAGs represent two novel Nitrospina-like species, both of which differed from all known Nitrospina species, including cultured species and published MAGs. Relative abundances of different Nitrospina genotypes in OMZ and non-OMZ seawaters were estimated by mapping metagenomic reads to newly constructed MAGs and published high-quality genomes of members from the Nitrospinae phylum. The two novel species were present in all major OMZs and were more abundant inside ODZs, which is consistent with the detection of higher nitrite oxidation rates in ODZs than in oxic seawaters and suggests novel adaptations to anoxic environments. The detection of a large number of unclassified nitrite oxidoreductase genes in the dataset implies that the phylogenetic diversity of nitrite oxidizers is greater than previously thought.  more » « less
Award ID(s):
1019624 1657663
PAR ID:
10485632
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
13
Issue:
10
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 2391-2402
Size(s):
p. 2391-2402
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nitrite is a central molecule in the nitrogen cycle because nitrite oxidation to nitrate (an aerobic process) retains fixed nitrogen in a system and its reduction to dinitrogen gas (anaerobic) reduces the fixed nitrogen inventory. Despite its acknowledged requirement for oxygen, nitrite oxidation is observed in oxygen-depleted layers of the ocean’s oxygen minimum zones (OMZs), challenging the current understanding of OMZ nitrogen cycling. Previous attempts to determine whether nitrite-oxidizing bacteria in the anoxic layer differ from known nitrite oxidizers in the open ocean were limited by cultivation difficulties and sequencing depth. Here, we construct 31 draft genomes of nitrite-oxidizing bacteria from global OMZs. The distribution of nitrite oxidation rates, abundance and expression of nitrite oxidoreductase genes, and relative abundance of nitrite-oxidizing bacterial draft genomes from the same samples all show peaks in the core of the oxygen-depleted zone (ODZ) and are all highly correlated in depth profiles within the major ocean oxygen minimum zones. The ODZ nitrite oxidizers are not found in the Tara Oceans global dataset (the most complete oxic ocean dataset), and the major nitrite oxidizers found in the oxygenated ocean do not occur in ODZ waters. A pangenomic analysis shows the ODZ nitrite oxidizers have distinct gene clusters compared to oxic nitrite oxidizers and are microaerophilic. These findings all indicate the existence of nitrite oxidizers whose niche is oxygen-deficient seawater. Thus, specialist nitrite-oxidizing bacteria are responsible for fixed nitrogen retention in marine oxygen minimum zones, with implications for control of the ocean’s fixed nitrogen inventory. 
    more » « less
  2. Abstract Fixed nitrogen limits primary productivity in most areas of the surface ocean. Nitrite oxidation is the main source of nitrate, the most abundant form of inorganic fixed nitrogen. Even though known as an aerobic process, nitrite oxidation is not always stimulated by increased oxygen concentration, and nitrite oxidation occurs in layers of oxygen minimum zones (OMZs) where oxygen is not detectable. Nitrite‐oxidizing bacteria, known since their original isolation as aerobes, were also detected in these layers. Whether and how nitrite oxidation is occurring in the anoxic seawater is debated. Here, we reassess recent advances in marine nitrite oxidation in OMZ regions using previous work and new data sets we collected in two Pacific OMZs. We analyze the complex relationship between nitrite oxidation and oxygen. We discuss potential mechanisms explaining nitrite oxidation in different layers of OMZs based on recent findings and propose future directions to resolve the controversial question of apparently anaerobic nitrite oxidation in anoxic layers. 
    more » « less
  3. null (Ed.)
    Abstract Oxygen minimum zones (OMZs) are unique marine regions where broad redox gradients stimulate biogeochemical cycles. Despite the important and unique role of OMZ microbes in these cycles, they are less characterized than microbes from the oxic ocean. Here we recovered 39 high- and medium-quality metagenome-assembled genomes (MAGs) from the Eastern Tropical South Pacific OMZ. More than half of these MAGs were not represented at the species level among 2631 MAGs from global marine datasets. OMZ MAGs were dominated by denitrifiers catalyzing nitrogen loss and especially MAGs with partial denitrification metabolism. A novel bacterial genome with nitrate-reducing potential could only be assigned to the phylum level. A Marine-Group II archaeon was found to be a versatile denitrifier, with the potential capability to respire multiple nitrogen compounds including N 2 O. The newly discovered denitrifying MAGs will improve our understanding of microbial adaptation strategies and the evolution of denitrification in the tree of life. 
    more » « less
  4. null (Ed.)
    The Eastern Tropical North Pacific (ETNP) is a large, persistent, and intensifying oxygen minimum zone (OMZ) that accounts for almost half of the total area of global OMZs. Within the OMZ core (350–700 m depth), dissolved oxygen is typically near or below the analytical detection limit of modern sensors (10 nM). Steep oxygen gradients above and below the OMZ core lead to vertical structuring of microbial communities that also vary between particle-associated (PA) and free-living (FL) size fractions. Here, we use 16S amplicon sequencing (iTags) to analyze the diversity and distribution of prokaryotic populations between FL and PA size fractions and among the range of ambient redox conditions. The hydrographic conditions at our study area were distinct from those previously reported in the ETNP and other OMZs, such as the ETSP. Trace oxygen concentrations (0.35 mM) were present throughout the OMZ core at our sampling location. Consequently, nitrite accumulations typically reported for OMZ cores were absent as were sequences for anammox bacteria (Brocadiales genus Candidatus Scalindua), which are commonly found across oxic-anoxic boundaries in other systems. However, ammonia-oxidizing bacteria (AOB) and archaea (AOA) distributions and maximal autotrophic carbon assimilation rates (1.4 mM C d􀀀1) coincided with a pronounced ammonium concentration maximum near the top of the OMZ core. In addition, members of the genus Nitrospina, a dominant nitrite-oxidizing bacterial (NOB) clade were present suggesting that both ammonia and nitrite oxidation occur at trace oxygen concentrations. Analysis of similarity test (ANOSIM) and Non-metric Dimensional Scaling (nMDS) revealed that bacterial and archaeal phylogenetic representations were significantly different between size fractions. Based on ANOSIM and iTag profiles, composition of PA assemblages was less influenced by the prevailing depth-dependent biogeochemical regime than the FL fraction. Based on the presence of AOA, NOB and trace oxygen in the OMZ core we suggest that nitrification is an active process in the nitrogen cycle of this region of the ETNP OMZ. 
    more » « less
  5. Abstract Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models. 
    more » « less