skip to main content


This content will become publicly available on September 30, 2024

Title: Acyltransferase families that act on thioesters: Sequences, structures, and mechanisms
Abstract

Acyltransferases (AT) are enzymes that catalyze the transfer of acyl group to a receptor molecule. This review focuses on ATs that act on thioester‐containing substrates. Although many ATs can recognize a wide variety of substrates, sequence similarity analysis allowed us to classify the ATs into fifteen distinct families. Each AT family is originated from enzymes experimentally characterized to have AT activity, classified according to sequence similarity, and confirmed with tertiary structure similarity for families that have crystallized structures available. All the sequences and structures of the AT families described here are present in the thioester‐active enzyme (ThYme) database. The AT sequences and structures classified into families and available in the ThYme database could contribute to enlightening the understanding acyl transfer to thioester‐containing substrates, most commonly coenzyme A, which occur in multiple metabolic pathways, mostly with fatty acids.

 
more » « less
NSF-PAR ID:
10485710
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Proteins: Structure, Function, and Bioinformatics
Volume:
92
Issue:
2
ISSN:
0887-3585
Format(s):
Medium: X Size: p. 157-169
Size(s):
["p. 157-169"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.

     
    more » « less
  2. Abstract

    We aim to enable the accurate and efficient transfer of knowledge about gene function gained fromArabidopsis thalianaand other model organisms to other plant species. This knowledge transfer is frequently challenging in plants due to duplications of individual genes and whole genomes in plant lineages. Such duplications result in complex evolutionary relationships between related genes, which may have similar sequences but highly divergent functions. In such cases, functional inference requires more than a simple sequence similarity calculation. We have developed an online resource, PhyloGenes (phylogenes.org), that displays precomputed phylogenetic trees for plant gene families along with experimentally validated function information for individual genes within the families. A total of 40 plant genomes and 10 non‐plant model organisms are represented in over 8,000 gene families. Evolutionary events such as speciation and duplication are clearly labeled on gene trees to distinguish orthologs from paralogs. Nearly 6,000 families have at least one member with an experimentally supported annotation to a Gene Ontology (GO) molecular function or biological process term. By displaying experimentally validated gene functions associated to individual genes within a tree, PhyloGenes enables functional inference for genes of uncharacterized function, based on their evolutionary relationships to experimentally studied genes, in a visually traceable manner. For the many families containing genes that have evolved to perform different functions, PhyloGenes facilitates the use of evolutionary history to determine the most likely function of genes that have not been experimentally characterized. Future work will enrich the resource by incorporating additional gene function datasets such as plant gene expression atlas data.

     
    more » « less
  3. null (Ed.)
    Abstract PULs (polysaccharide utilization loci) are discrete gene clusters of CAZymes (Carbohydrate Active EnZymes) and other genes that work together to digest and utilize carbohydrate substrates. While PULs have been extensively characterized in Bacteroidetes, there exist PULs from other bacterial phyla, as well as archaea and metagenomes, that remain to be catalogued in a database for efficient retrieval. We have developed an online database dbCAN-PUL (http://bcb.unl.edu/dbCAN_PUL/) to display experimentally verified CAZyme-containing PULs from literature with pertinent metadata, sequences, and annotation. Compared to other online CAZyme and PUL resources, dbCAN-PUL has the following new features: (i) Batch download of PUL data by target substrate, species/genome, genus, or experimental characterization method; (ii) Annotation for each PUL that displays associated metadata such as substrate(s), experimental characterization method(s) and protein sequence information, (iii) Links to external annotation pages for CAZymes (CAZy), transporters (UniProt) and other genes, (iv) Display of homologous gene clusters in GenBank sequences via integrated MultiGeneBlast tool and (v) An integrated BLASTX service available for users to query their sequences against PUL proteins in dbCAN-PUL. With these features, dbCAN-PUL will be an important repository for CAZyme and PUL research, complementing our other web servers and databases (dbCAN2, dbCAN-seq). 
    more » « less
  4. Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities. Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyond what is currently possible through the lens of reference genomes, we develop a computational approach to generate reference-free protein families from the sequence space in metagenomes. We analyze 26,931 metagenomes and identify 1.17 billion protein sequences longer than 35 amino acids with no similarity to any sequences from 102,491 reference genomes or the Pfam database. Using massively parallel graph-based clustering, we group these proteins into 106,198 novel sequence clusters with more than 100 members, doubling the number of protein families obtained from the reference genomes clustered using the same approach. We annotate these families on the basis of their taxonomic, habitat, geographical, and gene neighborhood distributions and, where sufficient sequence diversity is available, predict protein three-dimensional models, revealing novel structures. Overall, our results uncover an enormously diverse functional space, highlighting the importance of further exploring the microbial functional dark matter. 
    more » « less
  5. Abstract

    Nat/Ivy is a diverse and ubiquitous CoA‐binding evolutionary lineage that catalyzes acyltransferase reactions, primarily converting thioesters into amides. At the heart of the Nat/Ivy fold is a phosphate‐binding loop that bears a striking resemblance to that of P‐loop NTPases—both are extended, glycine‐rich loops situated between a β‐strand and an α‐helix. Nat/Ivy, therefore, represents an intriguing intersection between thioester chemistry, a putative primitive energy currency, and an ancient mode of phospho‐ligand binding. Current evidence suggests that Nat/Ivy emerged independently of other cofactor‐utilizing enzymes, and that the observed structural similarity—particularly of the cofactor binding site—is the product of shared constraints instead of shared ancestry. The reliance of Nat/Ivy on a β‐α‐β motif for CoA‐binding highlights the extent to which this simple structural motif may have been a fundamental evolutionary “nucleus” around which modern cofactor‐binding domains condensed, as has been suggested for HUP domains, Rossmanns, and P‐loop NTPases. Finally, by dissecting the patterns of conserved interactions between Nat/Ivy families and CoA, the coevolution of the enzyme and the cofactor was analyzed. As with the Rossmann, it appears that the pyrophosphate moiety at the center of the cofactor predates the enzyme, suggesting that Nat/Ivy emerged sometime after the metabolite dephospho‐CoA.

     
    more » « less