This content will become publicly available on December 1, 2024
- Award ID(s):
- 1711856
- NSF-PAR ID:
- 10485781
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Astrobiology
- Date Published:
- Journal Name:
- Astrobiology
- Volume:
- 23
- Issue:
- 12
- ISSN:
- 1531-1074
- Page Range / eLocation ID:
- 1348 to 1367
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Two sulphur-oxidizing, chemolithoautotrophic aerobes were isolated from the chemocline of an anchialine sinkhole located within the Weeki Wachee River of Florida. Gram-stain-negative cells of both strains were motile, chemotactic rods. Phylogenetic analysis of the 16S rRNA gene and predicted amino acid sequences of ribosomal proteins, average nucleotide identities, and alignment fractions suggest the strains HH1 T and HH3 T represent novel species belonging to the genus Thiomicrorhabdus . The genome G+C fraction of HH1 T is 47.8 mol% with a genome length of 2.61 Mb, whereas HH3 T has a G+C fraction of 52.4 mol% and 2.49 Mb genome length. Major fatty acids of the two strains included C 16 : 1 , C 18 : 1 and C 16 : 0 , with the addition of C 10:0 3-OH in HH1 T and C 12 : 0 in HH3 T . Chemolithoautotrophic growth of both strains was supported by elemental sulphur, sulphide, tetrathionate, and thiosulphate, and HH1 T was also able to use molecular hydrogen. Neither strain was capable of heterotrophic growth or use of nitrate as a terminal electron acceptor. Strain HH1 T grew from pH 6.5 to 8.5, with an optimum of pH 7.4, whereas strain HH3 T grew from pH 6 to 8 with an optimum of pH 7.5. Growth was observed between 15–35 °C with optima of 32.8 °C for HH1 T and 32 °C for HH3 T . HH1 T grew in media with [NaCl] 80–689 mM, with an optimum of 400 mM, while HH3 T grew at 80–517 mM, with an optimum of 80 mM. The name Thiomicrorhabdus heinhorstiae sp. nov. is proposed, and the type strain is HH1 T (=DSM 111584 T =ATCC TSD-240 T ). The name Thiomicrorhabdus cannonii sp. nov is proposed, and the type strain is HH3 T (=DSM 111593 T =ATCC TSD-241 T ).more » « less
-
This paper shares four Sea Grant-funded projects from across the United States. The Hawai‘i project integrates Western science and Hawaiian culture in place- and community-based teaching. The Maryland program takes a project-based learning approach to aquaculture education in the formal education system. The Massachusetts (MIT) project focuses on state-of-the-art technology in engineering, robotics, and ocean science. The Virginia project emphasizes science communication and lesson plan design. What all four projects have in common is their focus on environmental literacy and teacher professional development in formal education. This approach aims to raise the quality of STEM instruction by expanding teachers’ knowledge, skills, and resources. Training teachers also efficiently utilizes resources by maximizing the number of students we ultimately reach, thereby creating sustainability.
-
The flexibility and precision of CRISPR-Cas9 and related technologies have made these genome editing tools increasingly popular in agriculture, medicine, and basic science research for the past decade. Genome editing will continue to be relevant and utilized across diverse scientific fields in the future. Given this, students should be introduced to genome editing technologies and encouraged to consider their ethical implications early on in precollege biology curricula. Furthermore, instruction on this topic presents an opportunity to create partnerships between researchers and educators at the K-12 levels that can strengthen student engagement in science, technology, engineering, and mathematics. To this end, we present a 3-day student-centered learning program to introduce high school students to genome editing technologies through a hands-on base editing experiment in Escherichia coli, accompanied by a relevant background lecture and facilitated ethics discussion. This unique partnership aims to educate students and provides a framework for research institutions to implement genome editing outreach programs at local high schools. We have included all requisite materials, including lecture slides, worksheets, experimental protocols, and suggestions on active learning strategies for others to reproduce our program with their local communities.more » « less
-
A Gram-stain-negative, strictly anaerobic, non-motile, rod-shaped bacterium, designated SFB93T, was isolated from the intertidal sediments of South San Francisco Bay, located near Palo Alto, CA, USA. SFB93Twas capable of acetylenotrophic and diazotrophic growth, grew at 22–37 °C, pH 6.3–8.5 and in the presence of 10–45 g l−1NaCl. Phylogenetic analyses based on 16S rRNA gene sequencing showed that SFB93Trepresented a member of the genus
with highest 16S rRNA gene sequence similarities toSyntrophotalea DSM 3246T(96.6 %),Syntrophotalea acetylenica DSM 2380T(96.5 %), andSyntrophotalea carbinolica DSM 2394T(96.7 %). Genome sequencing revealed a genome size of 3.22 Mbp and a DNA G+C content of 53.4 %. SFB93Thad low genome-wide average nucleotide identity (81–87.5 %) and <70 % digital DNA–DNA hybridization value with other members of the genusSyntrophotalea venetiana . The phylogenetic position of SFB93Twithin the familySyntrophotalea and as a novel member of the genusSyntrophotaleaceae was confirmed via phylogenetic reconstruction based on concatenated alignments of 92 bacterial core genes. On the basis of the results of phenotypic, genotypic and phylogenetic analyses, a novel species,Syntrophotalea Syntrophotalea acetylenivorans sp. nov., is proposed, with SFB93T(=DSM 106009T=JCM 33327T=ATCC TSD-118T) as the type strain. -
Pritchard, Leighton (Ed.)
We report the genome of
Rhodococcus opacus strain MoAcy1 (DSM 44186 ), an aerobic soil isolate capable of using acetylene as its primary carbon and energy source (acetylenotrophy). The genome is composed of a single circular chromosome of ∼8 Mbp and two closed plasmids, with a G+C content of 67.3%.