We consider the problem of inferring the conditional independence graph (CIG) of high-dimensional Gaussian vectors from multi-attribute data. Most existing methods for graph estimation are based on single-attribute models where one associates a scalar random variable with each node. In multi-attribute graphical models, each node represents a random vector. In this paper we provide a unified theoretical analysis of multi-attribute graph learning using a penalized log-likelihood objective function. We consider both convex (sparse-group lasso) and non-convex (log-sum and SCAD group penalties) penalty/regularization functions. We establish sufficient conditions in a high-dimensional setting for consistency (convergence of the precision matrix to true value in the Frobenius norm), local convexity when using non-convex penalties, and graph recovery. We do not impose any incoherence or irrepresentability condition for our convergence results. 
                        more » 
                        « less   
                    
                            
                            Functional Group Bridge for Simultaneous Regression and Support Estimation
                        
                    
    
            Abstract This paper is motivated by studying differential brain activities to multiple experimental condition presentations in intracranial electroencephalography (iEEG) experiments. Contrasting effects of experimental conditions are often zero in most regions and nonzero in some local regions, yielding locally sparse functions. Such studies are essentially a function-on-scalar regression problem, with interest being focused not only on estimating nonparametric functions but also on recovering the function supports. We propose a weighted group bridge approach for simultaneous function estimation and support recovery in function-on-scalar mixed effect models, while accounting for heterogeneity present in functional data. We use B-splines to transform sparsity of functions to its sparse vector counterpart of increasing dimension, and propose a fast nonconvex optimization algorithm using nested alternative direction method of multipliers (ADMM) for estimation. Large sample properties are established. In particular, we show that the estimated coefficient functions are rate optimal in the minimax sense under the L2 norm and resemble a phase transition phenomenon. For support estimation, we derive a convergence rate under the norm that leads to a selection consistency property under δ-sparsity, and obtain a result under strict sparsity using a simple sufficient regularity condition. An adjusted extended Bayesian information criterion is proposed for parameter tuning. The developed method is illustrated through simulations and an application to a novel iEEG data set to study multisensory integration. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2015569
- PAR ID:
- 10485799
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Biometrics
- Volume:
- 79
- Issue:
- 2
- ISSN:
- 0006-341X
- Format(s):
- Medium: X Size: p. 1226-1238
- Size(s):
- p. 1226-1238
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Mirrokni, V (Ed.)Signal estimation problems with smoothness and sparsity priors can be naturally modeled as quadratic optimization with L0-“norm” constraints. Since such problems are non-convex and hard-to-solve, the standard approach is, instead, to tackle their convex surrogates based on L1-norm relaxations. In this paper, we propose new iterative (convex) conic quadratic relaxations that exploit not only the L0-“norm” terms, but also the fitness and smoothness functions. The iterative convexification approach substantially closes the gap between the L0-“norm” and its L1 surrogate. These stronger relaxations lead to significantly better estimators than L1-norm approaches and also allow one to utilize affine sparsity priors. In addition, the parameters of the model and the resulting estimators are easily interpretable. Experiments with a tailored Lagrangian decomposition method indicate that the proposed iterative convex relaxations yield solutions within 1% of the exact L0-approach, and can tackle instances with up to 100,000 variables under one minute.more » « less
- 
            We consider the problem of inferring the conditional independence graph (CIG) of high-dimensional Gaussian vectors from multi-attribute data. Most existing methods for graph estimation are based on single-attribute models where one associates a scalar random variable with each node. In multi-attribute graphical models, each node represents a random vector. In this paper we provide a unified theoretical analysis of multi-attribute graph learning using a penalized log-likelihood objective function. We consider both convex (sparse-group lasso) and sparse-group non-convex (log-sum and smoothly clipped absolute deviation (SCAD) penalties) penalty/regularization functions. An alternating direction method of multipliers (ADMM) approach coupled with local linear approximation to non-convex penalties is presented for optimization of the objective function. For non-convex penalties, theoretical analysis establishing local consistency in support recovery, local convexity and precision matrix estimation in high-dimensional settings is provided under two sets of sufficient conditions: with and without some irrepresentability conditions. We illustrate our approaches using both synthetic and real-data numerical examples. In the synthetic data examples the sparse-group log-sum penalized objective function significantly outperformed the lasso penalized as well as SCAD penalized objective functions with F1 -score and Hamming distance as performance metrics.more » « less
- 
            Sparsity of a learning solution is a desirable feature in machine learning. Certain reproducing kernel Banach spaces (RKBSs) are appropriate hypothesis spaces for sparse learning methods. The goal of this paper is to understand what kind of RKBSs can promote sparsity for learning solutions. We consider two typical learning models in an RKBS: the minimum norm interpolation (MNI) problem and the regularization problem. We first establish an explicit representer theorem for solutions of these problems, which represents the extreme points of the solution set by a linear combination of the extreme points of the subdifferential set, of the norm function, which is data-dependent. We then propose sufficient conditions on the RKBS that can transform the explicit representation of the solutions to a sparse kernel representation having fewer terms than the number of the observed data. Under the proposed sufficient conditions, we investigate the role of the regularization parameter on sparsity of the regularized solutions. We further show that two specific RKBSs, the sequence space l_1(N) and the measure space, can have sparse representer theorems for both MNI and regularization models.more » « less
- 
            Estimation of the conditional independence graph (CIG) of high-dimensional multivariate Gaussian time series from multi-attribute data is considered. Existing methods for graph estimation for such data are based on single-attribute models where one associates a scalar time series with each node.In multi-attribute graphical models, each node represents a random vector or vector time series. In this paper we provide a unified theoretical analysis of multi-attribute graph learning for dependent time series using a penalized log-likelihood objective function formulated in the frequency domain using the discrete Fourier transform of the time-domain data. We consider both convex (sparse-group lasso) and non-convex(log-sum and SCAD group penalties) penalty/regularization functions. We establish sufficient conditions in a high-dimensional setting for consistency (convergence of the inverse power spectral density to true value in the Frobenius norm), local convexity when using non-convex penalties, and graph recovery. We do not impose any incoherence or irrepresentability condition for our convergence results. We also empirically investigate selection of the tuning parameters based on the Bayesian information criterion, and illustrate our approach using numerical examples utilizing both synthetic and real data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
