Understanding the time-scales for diffusive processes and their degree of anisotropy is essential for modelling cosmic ray transport in turbulent magnetic fields. We show that the diffusion time-scales are isotropic over a large range of energy and turbulence levels, notwithstanding the high degree of anisotropy exhibited by the components of the diffusion tensor for cases with an ordered magnetic field component. The predictive power of the classical scattering relation as a description for the relation between the parallel and perpendicular diffusion coefficients is discussed and compared to numerical simulations. Very good agreement for a large parameter space is found, transforming classical scattering relation predictions into a computational prescription for the perpendicular component. We discuss and compare these findings, in particular, the time-scales to become diffusive with the time-scales that particles reside in astronomical environments, the so-called escape time-scales. The results show that, especially at high energies, the escape times obtained from diffusion coefficients may exceed the time-scales required for diffusion. In these cases, the escape time cannot be determined by the diffusion coefficients.
Transport coefficients in turbulence are comprised of correlation functions between turbulent fluctuations and efficient methods to calculate them are desirable. For example, in mean-field dynamo theories used to model the growth of large-scale magnetic fields of stars and galaxies, the turbulent electromotive force is commonly approximated by a series of tensor products of turbulent transport coefficients with successively higher order spatial derivatives of the mean magnetic field. One ingredient of standard models is the kinematic coefficient of the zeroth-order term, namely the averaged kinetic pseudo-tensor $\boldsymbol \alpha$, that converts toroidal to poloidal fields. Here we demonstrate an efficient way to calculate this quantity for rotating stratified turbulence, whereby the pre-averaged quantity is calculated for the motion of a single plume, and the average is then taken over an ensemble of plumes of different orientations. We calculate the plume dynamics in the most convenient frame, before transforming back to the lab frame and averaging. Our concise configuration space calculation gives essentially identical results to previous lengthier approaches. The present application exemplifies what is a broadly applicable method.
more » « less- PAR ID:
- 10485819
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society: Letters
- Volume:
- 483
- Issue:
- 1
- ISSN:
- 1745-3925
- Format(s):
- Medium: X Size: p. L104-L108
- Size(s):
- p. L104-L108
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT The nature of cosmic ray (CR) transport in the Milky Way remains elusive. The predictions of current microphysical CR transport models in magnetohydrodynamic (MHD) turbulence are drastically different from what is observed. These models usually focus on MHD turbulence with a strong guide field and ignore the impact of turbulent intermittency on particle propagation. This motivates our studying the alternative regime of large-amplitude turbulence with δB/B0 ≫ 1, in which intermittent small-scale magnetic field reversals are ubiquitous. We study particle transport in such turbulence by integrating trajectories in stationary snapshots. To quantify spatial diffusion, we use a set-up with continuous particle injection and escape, which we term the turbulent leaky box. We find that particle transport is very different from the strong guide-field case. Low-energy particles are better confined than high-energy particles, despite less efficient pitch-angle isotropization at small energies. In the limit of weak guide field, energy-dependent confinement is driven by the energy-dependent (in)ability to follow reversing magnetic field lines exactly and by the scattering in regions of ‘resonant curvature’, where the field line bends on a scale that is of the order of the local particle gyro-radius. We derive a heuristic model of particle transport in magnetic folds that approximately reproduces the energy dependence of transport found numerically. We speculate that CR propagation in the Galaxy is regulated by the intermittent field reversals highlighted here and discuss the implications of our findings for CR transport in the Milky Way.
-
We demonstrate an efficient mechanism for generating magnetic fields in turbulent, collisionless plasmas. By using fully kinetic, particle-in-cell simulations of an initially nonmagnetized plasma, we inspect the genesis of magnetization, in a nonlinear regime. The complex motion is initiated via a Taylor–Green vortex, and the plasma locally develops strong electron temperature anisotropy, due to the strain tensor of the turbulent flow. Subsequently, in a domino effect, the anisotropy triggers a Weibel instability, localized in space. In such active wave–particle interaction regions, the seed magnetic field grows exponentially and spreads to larger scales due to the interaction with the underlying stirring motion. Such a self-feeding process might explain magnetogenesis in a variety of astrophysical plasmas, wherever turbulence is present.more » « less
-
The combined effectiveness of model reduction and the quasilinear approximation for the reproduction of the low-order statistics of oceanic surface boundary layer turbulence is investigated. Idealized horizontally homogeneous problems of surface-forced thermal convection and Langmuir turbulence are studied in detail. Model reduction is achieved with a Galerkin projection of the governing equations onto a subset of modes determined by proper orthogonal decomposition (POD). When applied to boundary layers that are horizontally homogeneous, POD and a horizontally averaged quasilinear approximation both assume flow features that are horizontally wavelike, making the pairing very efficient. For less than 0.2% of the modes retained, the reduced quasilinear model is able to reproduce vertical profiles of horizontal mean fields as well as certain energetically important second-order turbulent transport statistics and energies to within 30% error. Reduced-basis quasilinear statistics must approach the full-basis statistics as the basis size approaches completion; however, some quasilinear statistics resemble those found in the fully nonlinear simulations at smaller basis truncations. Thus, model reduction could possibly improve upon the accuracy of quasilinear dynamics.
-
Abstract Zank et al. developed models describing the transport of low-frequency incompressible and nearly incompressible turbulence in inhomogeneous flows. The formalism was based on expressing the fluctuating variables in terms of the Elsässar variables and then taking “moments” subject to various closure hypotheses. The turbulence transport models are different according to whether the plasma beta regime is large, of order unity, or small. Here, we show explicitly that the three sets of turbulence transport models admit a conservation representation that resembles the well-known WKB transport equation for Alfvén wave energy density after introducing appropriate definitions of the “pressure” associated with the turbulent fluctuations. This includes introducing a distinct turbulent pressure tensor for 3D incompressible turbulence (the large plasma beta limit) and pressure tensors for quasi-2D and slab turbulence (the plasma beta order-unity or small regimes) that generalize the form of the WKB pressure tensor. Various limits of the different turbulent pressure tensors are discussed. However, the analogy between the conservation form of the turbulence transport models and the WKB model is not close for multiple reasons, including that the turbulence models express fully nonlinear physical processes unlike the strictly linear WKB description. The analysis presented here both serves as a check on the validity and correctness of the turbulence transport models and also provides greater transparency of the energy dissipation term and the “turbulent pressure” in our models, which is important for many practical applications.more » « less