skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Semiparametric Estimation of the Accelerated Mean Model with Panel Count Data Under Informative Examination Times
Summary

Panel count data arise when the number of recurrent events experienced by each subject is observed intermittently at discrete examination times. The examination time process can be informative about the underlying recurrent event process even after conditioning on covariates. We consider a semiparametric accelerated mean model for the recurrent event process and allow the two processes to be correlated through a shared frailty. The regression parameters have a simple marginal interpretation of modifying the time scale of the cumulative mean function of the event process. A novel estimation procedure for the regression parameters and the baseline rate function is proposed based on a conditioning technique. In contrast to existing methods, the proposed method is robust in the sense that it requires neither the strong Poisson-type assumption for the underlying recurrent event process nor a parametric assumption on the distribution of the unobserved frailty. Moreover, the distribution of the examination time process is left unspecified, allowing for arbitrary dependence between the two processes. Asymptotic consistency of the estimator is established, and the variance of the estimator is estimated by a model-based smoothed bootstrap procedure. Numerical studies demonstrated that the proposed point estimator and variance estimator perform well with practical sample sizes. The methods are applied to data from a skin cancer chemoprevention trial.

 
more » « less
Award ID(s):
1659328
NSF-PAR ID:
10485820
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
74
Issue:
3
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 944-953
Size(s):
["p. 944-953"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Statistical analysis of longitudinal data often involves modeling treatment effects on clinically relevant longitudinal biomarkers since an initial event (the time origin). In some studies including preventive HIV vaccine efficacy trials, some participants have biomarkers measured starting at the time origin, whereas others have biomarkers measured starting later with the time origin unknown. The semiparametric additive time-varying coefficient model is investigated where the effects of some covariates vary nonparametrically with time while the effects of others remain constant. Weighted profile least squares estimators coupled with kernel smoothing are developed. The method uses the expectation maximization approach to deal with the censored time origin. The Kaplan–Meier estimator and other failure time regression models such as the Cox model can be utilized to estimate the distribution and the conditional distribution of left censored event time related to the censored time origin. Asymptotic properties of the parametric and nonparametric estimators and consistent asymptotic variance estimators are derived. A two-stage estimation procedure for choosing weight is proposed to improve estimation efficiency. Numerical simulations are conducted to examine finite sample properties of the proposed estimators. The simulation results show that the theory and methods work well. The efficiency gain of the two-stage estimation procedure depends on the distribution of the longitudinal error processes. The method is applied to analyze data from the Merck 023/HVTN 502 Step HIV vaccine study.

     
    more » « less
  2. Summary

    The paper introduces a new approach to estimate the variance of statistics that are computed from an inhomogeneous spatial point process. The approach proposed is based on the assumption that the observed point process can be thinned to be a second-order stationary point process, where the thinning probability depends only on the first-order intensity function of the (unthinned) original process. The resulting variance estimator is proved to be asymptotically consistent for the target parameter under some very mild conditions. The use of the approach proposed is demonstrated in two important applications of modelling inhomogeneous spatial point processes: residual diagnostics of a fitted model and inference on the unknown regression coefficients. A simulation study and an application to a real data example are used to demonstrate the efficacy of the approach proposed.

     
    more » « less
  3. Abstract

    Structural nested mean models (SNMMs) are useful for causal inference of treatment effects in longitudinal observational studies. Most existing works assume that the data are collected at prefixed time points for all subjects, which, however, may be restrictive in practice. To deal with irregularly spaced observations, we assume a class of continuous‐time SNMMs and a martingale condition of no unmeasured confounding (NUC) to identify the causal parameters. We develop the semiparametric efficiency theory and locally efficient estimators for continuous‐time SNMMs. This task is nontrivial due to the restrictions from the NUC assumption imposed on the SNMM parameter. In the presence of ignorable censoring, we show that the complete‐case estimator is optimal among a class of weighting estimators including the inverse probability of censoring weighting estimator, and it achieves a double robustness feature in that it is consistent if at least one of the models for the potential outcome mean function and the treatment process is correctly specified. The new framework allows us to conduct causal analysis respecting the underlying continuous‐time nature of data processes. The simulation study shows that the proposed estimator outperforms existing approaches. We estimate the effect of time to initiate highly active antiretroviral therapy on the CD4 count at year 2 from the observational Acute Infection and Early Disease Research Program database.

     
    more » « less
  4. Abstract

    In this paper, the panel count data analysis for recurrent events is considered. Such analysis is useful for studying tumor or infection recurrences in both clinical trial and observational studies. A bivariate Gaussian Cox process model is proposed to jointly model the observation process and the recurrent event process. Bayesian nonparametric inference is proposed for simultaneously estimating regression parameters, bivariate frailty effects, and baseline intensity functions. Inference is done through Markov chain Monte Carlo, with fully developed computational techniques. Predictive inference is also discussed under the Bayesian setting. The proposed method is shown to be efficient via simulation studies. A clinical trial dataset on skin cancer patients is analyzed to illustrate the proposed approach.

     
    more » « less
  5. Nonparametric regression has been widely used to deal with nonlinearity and heteroscedasticity in financial time series. As the ratio of the mean and standard deviation functions, the Sharpe ratio function is one of the most commonly used risk/return measures in financial econometrics. Most existing methods take an indirect procedure, which first estimates the mean and variance functions and then applies these two functions to estimate the Sharpe ratio function. In practice, however, such an indirect procedure can often be less efficient. In this article, we propose a direct method to estimate the Sharpe ratio function by local linear regression. We further establish the asymptotic normality of the proposed estimator, apply Monte Carlo simulations to evaluate its finite sample performance, and compare it with the indirect method. The usefulness of our new method is also illustrated through a real data analysis.

     
    more » « less