skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Semiparametric Estimation of the Accelerated Mean Model with Panel Count Data Under Informative Examination Times
Summary Panel count data arise when the number of recurrent events experienced by each subject is observed intermittently at discrete examination times. The examination time process can be informative about the underlying recurrent event process even after conditioning on covariates. We consider a semiparametric accelerated mean model for the recurrent event process and allow the two processes to be correlated through a shared frailty. The regression parameters have a simple marginal interpretation of modifying the time scale of the cumulative mean function of the event process. A novel estimation procedure for the regression parameters and the baseline rate function is proposed based on a conditioning technique. In contrast to existing methods, the proposed method is robust in the sense that it requires neither the strong Poisson-type assumption for the underlying recurrent event process nor a parametric assumption on the distribution of the unobserved frailty. Moreover, the distribution of the examination time process is left unspecified, allowing for arbitrary dependence between the two processes. Asymptotic consistency of the estimator is established, and the variance of the estimator is estimated by a model-based smoothed bootstrap procedure. Numerical studies demonstrated that the proposed point estimator and variance estimator perform well with practical sample sizes. The methods are applied to data from a skin cancer chemoprevention trial.  more » « less
Award ID(s):
1659328
PAR ID:
10485820
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
74
Issue:
3
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 944-953
Size(s):
p. 944-953
Sponsoring Org:
National Science Foundation
More Like this
  1. The ratio of the hazard functions of two populations or two strata of a single population plays an important role in time-to-event analysis. Cox regression is commonly used to estimate the hazard ratio under the assumption that it is constant in time, which is known as the proportional hazards assumption. However, this assumption is often violated in practice, and when it is violated, the parameter estimated by Cox regression is difficult to interpret. The hazard ratio can be estimated in a nonparametric manner using smoothing, but smoothing-based estimators are sensitive to the selection of tuning parameters, and it is often difficult to perform valid inference with such estimators. In some cases, it is known that the hazard ratio function is monotone. In this article, we demonstrate that monotonicity of the hazard ratio function defines an invariant stochastic order, and we study the properties of this order. Furthermore, we introduce an estimator of the hazard ratio function under a monotonicity constraint. We demonstrate that our estimator converges in distribution to a mean-zero limit, and we use this result to construct asymptotically valid confidence intervals. Finally, we conduct numerical studies to assess the finite-sample behavior of our estimator, and we use our methods to estimate the hazard ratio of progression-free survival in pulmonary adenocarcinoma patients treated with gefitinib or carboplatin-paclitaxel. 
    more » « less
  2. Abstract Statistical analysis of longitudinal data often involves modeling treatment effects on clinically relevant longitudinal biomarkers since an initial event (the time origin). In some studies including preventive HIV vaccine efficacy trials, some participants have biomarkers measured starting at the time origin, whereas others have biomarkers measured starting later with the time origin unknown. The semiparametric additive time-varying coefficient model is investigated where the effects of some covariates vary nonparametrically with time while the effects of others remain constant. Weighted profile least squares estimators coupled with kernel smoothing are developed. The method uses the expectation maximization approach to deal with the censored time origin. The Kaplan–Meier estimator and other failure time regression models such as the Cox model can be utilized to estimate the distribution and the conditional distribution of left censored event time related to the censored time origin. Asymptotic properties of the parametric and nonparametric estimators and consistent asymptotic variance estimators are derived. A two-stage estimation procedure for choosing weight is proposed to improve estimation efficiency. Numerical simulations are conducted to examine finite sample properties of the proposed estimators. The simulation results show that the theory and methods work well. The efficiency gain of the two-stage estimation procedure depends on the distribution of the longitudinal error processes. The method is applied to analyze data from the Merck 023/HVTN 502 Step HIV vaccine study. 
    more » « less
  3. Abstract Structural nested mean models (SNMMs) are useful for causal inference of treatment effects in longitudinal observational studies. Most existing works assume that the data are collected at prefixed time points for all subjects, which, however, may be restrictive in practice. To deal with irregularly spaced observations, we assume a class of continuous‐time SNMMs and a martingale condition of no unmeasured confounding (NUC) to identify the causal parameters. We develop the semiparametric efficiency theory and locally efficient estimators for continuous‐time SNMMs. This task is nontrivial due to the restrictions from the NUC assumption imposed on the SNMM parameter. In the presence of ignorable censoring, we show that the complete‐case estimator is optimal among a class of weighting estimators including the inverse probability of censoring weighting estimator, and it achieves a double robustness feature in that it is consistent if at least one of the models for the potential outcome mean function and the treatment process is correctly specified. The new framework allows us to conduct causal analysis respecting the underlying continuous‐time nature of data processes. The simulation study shows that the proposed estimator outperforms existing approaches. We estimate the effect of time to initiate highly active antiretroviral therapy on the CD4 count at year 2 from the observational Acute Infection and Early Disease Research Program database. 
    more » « less
  4. Abstract When estimating a global average treatment effect (GATE) under network interference, units can have widely different relationships to the treatment depending on a combination of the structure of their network neighborhood, the structure of the interference mechanism, and how the treatment was distributed in their neighborhood. In this work, we introduce a sequential procedure to generate and select graph- and treatment-based covariates for GATE estimation under regression adjustment. We show that it is possible to simultaneously achieve low bias and considerably reduce variance with such a procedure. To tackle inferential complications caused by our feature generation and selection process, we introduce a way to construct confidence intervals based on a block bootstrap. We illustrate that our selection procedure and subsequent estimator can achieve good performance in terms of root-mean-square error in several semi-synthetic experiments with Bernoulli designs, comparing favorably to an oracle estimator that takes advantage of regression adjustments for the known underlying interference structure. We apply our method to a real-world experimental dataset with strong evidence of interference and demonstrate that it can estimate the GATE reasonably well without knowing the interference processa priori. 
    more » « less
  5. Longitudinal clinical trials for which recurrent events endpoints are of interest are commonly subject to missing event data. Primary analyses in such trials are often performed assuming events are missing at random, and sensitivity analyses are necessary to assess robustness of primary analysis conclusions to missing data assumptions. Control‐based imputation is an attractive approach in superiority trials for imposing conservative assumptions on how data may be missing not at random. A popular approach to implementing control‐based assumptions for recurrent events is multiple imputation (MI), but Rubin's variance estimator is often biased for the true sampling variability of the point estimator in the control‐based setting. We propose distributional imputation (DI) with corresponding wild bootstrap variance estimation procedure for control‐based sensitivity analyses of recurrent events. We apply control‐based DI to a type I diabetes trial. In the application and simulation studies, DI produced more reasonable standard error estimates than MI with Rubin's combining rules in control‐based sensitivity analyses of recurrent events. 
    more » « less