skip to main content

Title: Bayesian Interaction Selection Model for Multimodal Neuroimaging Data Analysis

Multimodality or multiconstruct data arise increasingly in functional neuroimaging studies to characterize brain activity under different cognitive states. Relying on those high-resolution imaging collections, it is of great interest to identify predictive imaging markers and intermodality interactions with respect to behavior outcomes. Currently, most of the existing variable selection models do not consider predictive effects from interactions, and the desired higher-order terms can only be included in the predictive mechanism following a two-step procedure, suffering from potential misspecification. In this paper, we propose a unified Bayesian prior model to simultaneously identify main effect features and intermodality interactions within the same inference platform in the presence of high-dimensional data. To accommodate the brain topological information and correlation between modalities, our prior is designed by compiling the intermediate selection status of sequential partitions in light of the data structure and brain anatomical architecture, so that we can improve posterior inference and enhance biological plausibility. Through extensive simulations, we show the superiority of our approach in main and interaction effects selection, and prediction under multimodality data. Applying the method to the Adolescent Brain Cognitive Development (ABCD) study, we characterize the brain functional underpinnings with respect to general cognitive ability under different memory load conditions.

more » « less
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Medium: X Size: p. 655-668
["p. 655-668"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Brain functional connectome analysis is commonly based on population‐wise inference. However, in this way precious information provided at the individual subject level may be overlooked. Recently, several studies have shown that individual differences contribute strongly to the functional connectivity patterns. In particular, functional connectomes have been proven to offer a fingerprint measure, which can reliably identify a given individual from a pool of participants. In this work, we propose to refine the standard measure of individual functional connectomes using dictionary learning. More specifically, we rely on the assumption that each functional connectivity is dominated by stable group and individual factors. By subtracting population‐wise contributions from connectivity patterns facilitated by dictionary representation, intersubject variability should be increased within the group. We validate our approach using several types of analyses. For example, we observe that refined connectivity profiles significantly increase subject‐specific identifiability across functional magnetic resonance imaging (fMRI) session combinations. Besides, refined connectomes can also improve the prediction power for cognitive behaviors. In accordance with results from the literature, we find that individual distinctiveness is closely linked with differences in neurocognitive activity within the brain. In summary, our results indicate that individual connectivity analysis benefits from the group‐wise inferences and refined connectomes are indeed desirable for brain mapping.

    more » « less
  2. Abstract Background

    In Alzheimer’s Diseases (AD) research, multimodal imaging analysis can unveil complementary information from multiple imaging modalities and further our understanding of the disease. One application is to discover disease subtypes using unsupervised clustering. However, existing clustering methods are often applied to input features directly, and could suffer from the curse of dimensionality with high-dimensional multimodal data. The purpose of our study is to identify multimodal imaging-driven subtypes in Mild Cognitive Impairment (MCI) participants using a multiview learning framework based on Deep Generalized Canonical Correlation Analysis (DGCCA), to learn shared latent representation with low dimensions from 3 neuroimaging modalities.


    DGCCA applies non-linear transformation to input views using neural networks and is able to learn correlated embeddings with low dimensions that capture more variance than its linear counterpart, generalized CCA (GCCA). We designed experiments to compare DGCCA embeddings with single modality features and GCCA embeddings by generating 2 subtypes from each feature set using unsupervised clustering. In our validation studies, we found that amyloid PET imaging has the most discriminative features compared with structural MRI and FDG PET which DGCCA learns from but not GCCA. DGCCA subtypes show differential measures in 5 cognitive assessments, 6 brain volume measures, and conversion to AD patterns. In addition, DGCCA MCI subtypes confirmed AD genetic markers with strong signals that existing late MCI group did not identify.


    Overall, DGCCA is able to learn effective low dimensional embeddings from multimodal data by learning non-linear projections. MCI subtypes generated from DGCCA embeddings are different from existing early and late MCI groups and show most similarity with those identified by amyloid PET features. In our validation studies, DGCCA subtypes show distinct patterns in cognitive measures, brain volumes, and are able to identify AD genetic markers. These findings indicate the promise of the imaging-driven subtypes and their power in revealing disease structures beyond early and late stage MCI.

    more » « less
  3. Abstract

    Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter‐subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest–rest pair). Furthermore, high‐level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high‐order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions.

    more » « less
  4. Abstract

    Context.Large multi-site neuroimaging datasets have significantly advanced our quest to understand brain-behavior relationships and to develop biomarkers of psychiatric and neurodegenerative disorders. Yet, such data collections come at a cost, as the inevitable differences across samples may lead to biased or erroneous conclusions.Objective.We aim to validate the estimation of individual brain network dynamics fingerprints and appraise sources of variability in large resting-state functional magnetic resonance imaging (rs-fMRI) datasets by providing a novel point of view based on data-driven dynamical models.Approach.Previous work has investigated this critical issue in terms of effects on static measures, such as functional connectivity and brain parcellations. Here, we utilize dynamical models (hidden Markov models—HMM) to examine how diverse scanning factors in multi-site fMRI recordings affect our ability to infer the brain’s spatiotemporal wandering between large-scale networks of activity. Specifically, we leverage a stable HMM trained on the Human Connectome Project (homogeneous) dataset, which we then apply to an heterogeneous dataset of traveling subjects scanned under a multitude of conditions.Main Results.Building upon this premise, we first replicate previous work on the emergence of non-random sequences of brain states. We next highlight how these time-varying brain activity patterns are robust subject-specific fingerprints. Finally, we suggest these fingerprints may be used to assess which scanning factors induce high variability in the data.Significance.These results demonstrate that we can (i) use large scale dataset to train models that can be then used to interrogate subject-specific data, (ii) recover the unique trajectories of brain activity changes in each individual, but also (iii) urge caution as our ability to infer such patterns is affected by how, where and when we do so.

    more » « less
  5. Abstract

    A central goal at the interface of ecology and conservation is understanding how the relationship between biodiversity and ecosystem function (B–EF) will shift with changing climate. Despite recent theoretical advances, studies which examine temporal variation in the functional traits and mechanisms (mass ratio effects and niche complementarity effects) that underpin the B–EF relationship are lacking.

    Here, we use 13 years of data on plant species composition, plant traits, local‐scale abiotic variables, above‐ground net primary productivity (ANPP), and climate from the alpine tundra of Colorado (USA) to investigate temporal dynamics in the B–EF relationship. To assess how changing climatic conditions may alter the B–EF relationship, we built structural equation models (SEMs) for 11 traits across 13 years and evaluated the power of different trait SEMs to predict ANPP, as well as the relative contributions of mass ratio effects (community‐weighted mean trait values; CWM), niche complementarity effects (functional dispersion; FDis) and local abiotic variables. Additionally, we coupled linear mixed effects models with Multimodel inference methods to assess how inclusion of trait–climate interactions might improve our ability to predict ANPP through time.

    In every year, at least one SEM exhibited good fit, explaining between 19.6% and 57.2% of the variation in ANPP. However, the identity of the trait which best explained ANPP changed depending on winter precipitation, with leaf area, plant height and foliar nitrogen isotope content (δ15N) SEMs performing best in high, middle and low precipitation years, respectively. Regardless of trait identity, CWMs exerted a stronger influence on ANPP than FDis and total biotic effects were always greater than total abiotic effects. Multimodel inference reinforced the results of SEM analysis, with the inclusion of climate–trait interactions marginally improving our ability to predict ANPP through time.

    Synthesis. Our results suggest that temporal variation in climatic conditions influences which traits, mechanisms and abiotic variables were most responsible for driving the B–EF relationship. Importantly, our findings suggest that future research should consider temporal variability in the B–EF relationship, particularly how the predictive power of individual functional traits and abiotic variables may fluctuate as conditions shift due to climate change.

    more » « less