skip to main content


This content will become publicly available on December 1, 2024

Title: Optimized virtual optical waveguides enhance light throughput in scattering media
Abstract

Ultrasonically-sculpted gradient-index optical waveguides enable non-invasive light confinement inside scattering media. The confinement level strongly depends on ultrasound parameters (e.g., amplitude, frequency), and medium optical properties (e.g., extinction coefficient). We develop a physically-accurate simulator, and use it to quantify these dependencies for a radially-symmetric virtual optical waveguide. Our analysis provides insights for optimizing virtual optical waveguides for given applications. We leverage these insights to configure virtual optical waveguides that improve light confinement fourfold compared to previous configurations at five mean free paths. We show that virtual optical waveguides enhance light throughput by 50% compared to an ideal external lens, in a medium with bladder-like optical properties at one transport mean free path. We corroborate these simulation findings with real experiments: we demonstrate, for the first time, that virtual optical waveguides recycle scattered light, and enhance light throughput by 15% compared to an external lens at five transport mean free paths.

 
more » « less
Award ID(s):
1900849 1730147
NSF-PAR ID:
10485842
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A conventional optical lens can be used to focus light into the target medium from outside, without disturbing the medium. The focused spot size is proportional to the focal distance in a conventional lens, resulting in a tradeoff between penetration depth in the target medium and spatial resolution. We have shown that virtual ultrasonically sculpted gradient-index (GRIN) optical waveguides can be formed in the target medium to steer light without disturbing the medium. Here, we demonstrate that such virtual waveguides can relay an externally focused Gaussian beam of light through the medium beyond the focal distance of a single external physical lens, to extend the penetration depth without compromising the spot size. Moreover, the spot size can be tuned by reconfiguring the virtual waveguide. We show that these virtual GRIN waveguides can be formed in transparent and turbid media, to enhance the confinement and contrast ratio of the focused beam of light at the target location. This method can be extended to realize complex optical systems of external physical lenses and in situ virtual waveguides, to extend the reach and flexibility of optical methods.

     
    more » « less
  2. Abstract

    We demonstrate in situ non-invasive relay imaging through a medium without inserting physical optical components. We show that a virtual optical graded-index (GRIN) lens can be sculpted in the medium using in situ reconfigurable ultrasonic interference patterns to relay images through the medium. Ultrasonic wave patterns change the local density of the medium to sculpt a graded refractive index pattern normal to the direction of light propagation, which modulates the phase front of light, causing it to focus within the medium and effectively creating a virtual relay lens. We demonstrate the in situ relay imaging and resolving of small features (22 µm) through a turbid medium (optical thickness = 5.7 times the scattering mean free path), which is normally opaque. The focal distance and the numerical aperture of the sculpted optical GRIN lens can be tuned by changing the ultrasonic wave parameters. As an example, we experimentally demonstrate that the axial focal distance can be continuously scanned over a depth of 5.4 mm in the modulated medium and that the numerical aperture can be tuned up to 21.5%. The interaction of ultrasonic waves and light can be mediated through different physical media, including turbid media, such as biological tissue, in which the ultrasonically sculpted GRIN lens can be used for relaying images of the underlying structures through the turbid medium, thus providing a potential alternative to implanting invasive endoscopes.

     
    more » « less
  3. A conventional optical lens can enhance lateral resolution in optical coherence tomography (OCT) by focusing the input light onto the sample. However, the typical Gaussian beam profile of such a lens will impose a tradeoff between the depth of focus (DOF) and the lateral resolution. The lateral resolution is often compromised to achieve amm-scale DOF. We have experimentally shown that using a cascade system of an ultrasonic virtual tunable optical waveguide (UVTOW) and a short focal-length lens can provide a large DOF without severely compromising the lateral resolution compared to an external lens with the same effective focal length. In addition, leveraging the reconfigurability of UVTOW, we show that the focal length of the cascade system can be tuned without the need for mechanical translation of the optical lens. We compare the performance of the cascade system with a conventional optical lens to demonstrate enhanced DOF without compromising the lateral resolution as well as reconfigurability of UVTOW for OCT imaging.

     
    more » « less
  4. Abstract

    Excitons, bound electron–hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E–Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E–Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E–Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E–P modes. These E–Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E–Ps to lower energy E–Ps. Finally, we also demonstrate that E–Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E–Ps opening new opportunities towards their manipulation for polaritonic devices.

     
    more » « less
  5. Abstract

    Phototherapy represents an attractive route for treating a range of challenging dermatological diseases. Existing skin phototherapy modalities rely on direct UV illumination, although with limited efficacy in addressing disorders of deeper tissue and with requirements for specialized illumination equipment and masks to shield unaffected regions of the skin. This work introduces a skin‐integrated optoelectronic device that incorporates an array of UVA (360 nm) light emitting diodes in layouts that match those of typical lesional plaques and in designs that couple to biocompatible, penetrating polymer microneedle light waveguides to provide optical access to deep skin. Monte Carlo simulations and experimental results in phantom skin suggest that these waveguides significantly enhance light delivery to deep skin, with a >4‐fold increase for depths of >500 µm. In ex vivo human skin, the devices show reduced measures of phototoxicity compared to direct illumination and enhanced modulation of gene expression relevant to sclerosing skin diseases. These systems are also compatible with design principles in soft, skin‐compatible electronics and battery‐powered wireless operation. Collectively, the favorable mechanical and light delivery properties of these devices expand possibilities in targeting of deep skin lesions beyond those attainable with clinical‐standard UV light therapy approaches.

     
    more » « less