skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photospheric Prompt Emission From Long Gamma-ray Burst Simulations. I. Optical Emission
Abstract A complete understanding of gamma-ray bursts (GRBs) has been difficult to achieve, due to our incomplete knowledge of the radiation mechanism that is responsible for producing the prompt emission. This emission, which is detected in the first tens of seconds of the GRB, is typically dominated by hard X-ray and gamma-ray photons, although there have also been a few dozen prompt optical detections. These optical detections have the potential to discriminate between plausible prompt emission models, such as the photospheric and synchrotron shock models. In this work, we use an improved MCRaT code, which includes cyclo-synchrotron emission and absorption, to conduct radiative transfer calculations from optical to gamma-ray energies under the photospheric model. The calculations are conducted using a set of two-dimensional relativistic hydrodynamic long GRB jet simulations, consisting of a constant and a variable jet. We predict the correlations between the optical and gamma-ray light curves as functions of observer angle and jet variability, and find that there should be extremely dim optical prompt precursors for large viewing angles. Additionally, the detected optical emission originates from dense regions of the outflow, such as shock interfaces and the jet-cocoon interface. Our results also show that the photospheric model is unable to account for the current set of optical prompt detections that have been made and therefore additional radiative mechanisms are needed to explain these prompt optical observations. These findings show the importance of conducting global radiative transfer simulations using hydrodynamically calculated jet structures.  more » « less
Award ID(s):
1907955
PAR ID:
10485950
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 257
Size(s):
Article No. 257
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although gamma ray bursts (GRBs) have been detected for many decades, the lack of knowledge regarding the radiation mechanism that produces the energetic flash of radiation, or prompt emission, from these events has prevented the full use of GRBs as probes of high-energy astrophysical processes. While there are multiple models that attempt to describe the prompt emission, each model can be tuned to account for observed GRB characteristics in the gamma and X-ray energy bands. One energy range that has not been fully explored for the purpose of prompt emission model comparison is that of the optical band, especially with regard to polarization. Here, we use an improved Monte Carlo radiation transfer code to calculate the expected photospheric optical and gamma-ray polarization signatures (Πoptand Πγ, respectively) from a set of two relativistic hydrodynamic long GRB simulations, which emulate a constant and variable jet. We find that time-resolved Πoptcan be large (∼75%) while time-integrated Πoptcan be smaller due to integration over the asymmetries in the GRB jet where optical photons originate; Πγfollows a similar evolution as Πoptwith smaller polarization degrees. We also show that Πoptand Πγagree well with observations in each energy range. Additionally, we make predictions for the expected polarization of GRBs based on their location within the Yonetoku relationship. While improvements can be made to our analyses and predictions, they exhibit the insight that global radiative transfer simulations of GRB jets can provide with respect to current and future observations. 
    more » « less
  2. Abstract While gamma-ray bursts (GRBs) have the potential to shed light on the astrophysics of jets, compact objects, and cosmology, a major set back in their use as probes of these phenomena stems from our incomplete knowledge surrounding their prompt emission. There are numerous models that can account for various observations of GRBs in the gamma-ray and X-ray energy ranges, due to the flexibility in the number of parameters that can be tuned to increase agreement with data. Furthermore, these models lack predictive power that can test future spectropolarimetric observations of GRBs across the electromagnetic spectrum. In this work, we use the MCRaT radiative transfer code to calculate the X-ray spectropolarimetric signatures expected from the photospheric model for two unique hydrodynamic simulations of long GRBs. We make time-resolved and time-integrated comparisons between the X-ray and gamma-ray mock observations, shedding light on the information that can be obtained from X-ray prompt emission signatures. Our results show that theT90derived from the X-ray light curve is the best diagnostic for the time that the central engine is active. We also find that our simulations reproduce the observed characteristics of the Einstein Probe–detected GRB 240315C. Based on our simulations, we are also able to make predictions for future X-ray spectropolarimetric measurements. Our results show the importance of conducting global radiative transfer calculations of GRB jets to better contextualize the prompt emission observations and constrain the mechanisms that produce the prompt emission. 
    more » « less
  3. Abstract The deaths of massive stars are sometimes accompanied by the launch of highly relativistic and collimated jets. If the jet is pointed towards Earth, we observe a ‘prompt’ gamma-ray burst due to internal shocks or magnetic reconnection events within the jet, followed by a long-lived broadband synchrotron afterglow as the jet interacts with the circumburst material. While there is solid observational evidence that emission from multiple shocks contributes to the afterglow signature, detailed studies of the reverse shock, which travels back into the explosion ejecta, are hampered by a lack of early-time observations, particularly in the radio band. We present rapid follow-up radio observations of the exceptionally bright gamma-ray burst GRB 221009A that reveal in detail, both temporally and in frequency space, an optically thick rising component from the reverse shock. From this, we are able to constrain the size, Lorentz factor and internal energy of the outflow while providing accurate predictions for the location of the peak frequency of the reverse shock in the first few hours after the burst. These observations challenge standard gamma-ray burst models describing reverse shock emission. 
    more » « less
  4. Aims. With the accumulation of polarization data in the gamma-ray burst (GRB) prompt phase, polarization models can be tested. Methods. We predicted the time-integrated polarizations of 37 GRBs with polarization observation. We used their observed spectral parameters to do this. In the model, the emission mechanism is synchrotron radiation, and the magnetic field configuration in the emission region was assumed to be large-scale ordered. Therefore, the predicted polarization degrees (PDs) are upper limits. Results. For most GRBs detected by the Gamma-ray Burst Polarimeter (GAP), POLAR, and AstroSat, the predicted PD can match the corresponding observed PD. Hence the synchrotron-emission model in a large-scale ordered magnetic field can interpret both the moderately low PDs (∼10%) detected by POLAR and relatively high PDs (∼45%) observed by GAP and AstroSat well. Therefore, the magnetic fields in these GRB prompt phases or at least during the peak times are dominated by the ordered component. However, the predicted PDs of GRB 110721A observed by GAP and GRB 180427A observed by AstroSat are both lower than the observed values. Because the synchrotron emission in an ordered magnetic field predicts the upper-limit of the PD for the synchrotron-emission models, PD observations of the two bursts challenge the synchrotron-emission model. Then we predict the PDs of the High-energy Polarimetry Detector (HPD) and Low-energy Polarimetry Detector (LPD) on board the upcoming POLAR-2. In the synchrotron-emission models, the concentrated PD values of the GRBs detected by HPD will be higher than the LPD, which might be different from the predictions of the dissipative photosphere model. Therefore, more accurate multiband polarization observations are highly desired to test models of the GRB prompt phase. 
    more » « less
  5. Abstract Long-duration GRB 200829A was detected by Fermi-GBM and Swift-BAT/XRT, and then rapidly observed by other ground-based telescopes. It has a weak γ -ray emission in the very early phase and is followed by a bright spiky γ -ray emission pulse. The radiation spectrum of the very early emission is best fitted by a power-law function with index ∼−1.7. However, the bright spiky γ -ray pulse, especially the time around the peak, exhibits a distinct two-component radiation spectrum, i.e., Band function combined with a blackbody radiation spectrum. We infer the photospheric properties and reveal a medium magnetization at a photospheric position by adopting the initial size of the outflow as r 0 = 10 9 cm. It implies that the Band component in this pulse may be formed during the dissipation of the magnetic field. The power-law radiation spectra found in the very early prompt emission may imply the external-shock origination of this phase. Then, we perform the Markov Chain Monte Carlo method fitting on the light curves of this burst, where the jet corresponding to the γ -ray pulse at around 20 s is used to refresh the external shock. It is shown that the light curves of the very early phase and X-ray afterglow after 40 s, involving the X-ray bump at around 100 s, can be well modeled in the external-shock scenario. For the obtained initial outflow, we estimate the minimum magnetization factor of the jet based on the fact that the photospheric emission of this jet is missed in the very early phase. 
    more » « less