skip to main content


Title: A Smoothing-Based Goodness-of-Fit Test of Covariance for Functional Data
Abstract

Functional data methods are often applied to longitudinal data as they provide a more flexible way to capture dependence across repeated observations. However, there is no formal testing procedure to determine if functional methods are actually necessary. We propose a goodness-of-fit test for comparing parametric covariance functions against general nonparametric alternatives for both irregularly observed longitudinal data and densely observed functional data. We consider a smoothing-based test statistic and approximate its null distribution using a bootstrap procedure. We focus on testing a quadratic polynomial covariance induced by a linear mixed effects model and the method can be used to test any smooth parametric covariance function. Performance and versatility of the proposed test is illustrated through a simulation study and three data applications.

 
more » « less
NSF-PAR ID:
10486002
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
75
Issue:
2
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 562-571
Size(s):
["p. 562-571"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Motivated by an imaging study, the paper develops a non-parametric testing procedure for testing the null hypothesis that two samples of curves observed at discrete grids and with noise have the same underlying distribution. The objective is to compare formally white matter tract profiles between healthy individuals and multiple-sclerosis patients, as assessed by conventional diffusion tensor imaging measures. We propose to decompose the curves by using functional principal component analysis of a mixture process, which we refer to as marginal functional principal component analysis. This approach reduces the dimension of the testing problem in a way that enables the use of traditional non-parametric univariate testing procedures. The procedure is computationally efficient and accommodates different sampling designs. Numerical studies are presented to validate the size and power properties of the test in many realistic scenarios. In these cases, the test proposed has been found to be more powerful than its primary competitor. Application to the diffusion tensor imaging data reveals that all the tracts studied are associated with multiple sclerosis and the choice of the diffusion tensor image measurement is important when assessing axonal disruption.

     
    more » « less
  2. Summary

    This article investigates a generalized semiparametric varying-coefficient model for longitudinal data that can flexibly model three types of covariate effects: time-constant effects, time-varying effects, and covariate-varying effects. Different link functions can be selected to provide a rich family of models for longitudinal data. The model assumes that the time-varying effects are unspecified functions of time and the covariate-varying effects are parametric functions of an exposure variable specified up to a finite number of unknown parameters. The estimation procedure is developed using local linear smoothing and profile weighted least squares estimation techniques. Hypothesis testing procedures are developed to test the parametric functions of the covariate-varying effects. The asymptotic distributions of the proposed estimators are established. A working formula for bandwidth selection is discussed and examined through simulations. Our simulation study shows that the proposed methods have satisfactory finite sample performance. The proposed methods are applied to the ACTG 244 clinical trial of HIV infected patients being treated with Zidovudine to examine the effects of antiretroviral treatment switching before and after HIV develops the T215Y/F drug resistance mutation. Our analysis shows benefits of treatment switching to the combination therapies as compared to continuing with ZDV monotherapy before and after developing the 215-mutation.

     
    more » « less
  3. Summary

    Comparing large covariance matrices has important applications in modern genomics, where scientists are often interested in understanding whether relationships (e.g., dependencies or co-regulations) among a large number of genes vary between different biological states. We propose a computationally fast procedure for testing the equality of two large covariance matrices when the dimensions of the covariance matrices are much larger than the sample sizes. A distinguishing feature of the new procedure is that it imposes no structural assumptions on the unknown covariance matrices. Hence, the test is robust with respect to various complex dependence structures that frequently arise in genomics. We prove that the proposed procedure is asymptotically valid under weak moment conditions. As an interesting application, we derive a new gene clustering algorithm which shares the same nice property of avoiding restrictive structural assumptions for high-dimensional genomics data. Using an asthma gene expression dataset, we illustrate how the new test helps compare the covariance matrices of the genes across different gene sets/pathways between the disease group and the control group, and how the gene clustering algorithm provides new insights on the way gene clustering patterns differ between the two groups. The proposed methods have been implemented in an R-package HDtest and are available on CRAN.

     
    more » « less
  4. Abstract

    When the observed data are contaminated with errors, the standard two‐sample testing approaches that ignore measurement errors may produce misleading results, including a higher type‐I error rate than the nominal level. To tackle this inconsistency, a nonparametric test is proposed for testing equality of two distributions when the observed contaminated data follow the classical additive measurement error model. The proposed test takes into account the presence of errors in the observed data, and the test statistic is defined in terms of the (deconvoluted) characteristic functions of the latent variables. Proposed method is applicable to a wide range of scenarios as no parametric restrictions are imposed either on the distribution of the underlying latent variables or on the distribution of the measurement errors. Asymptotic null distribution of the test statistic is derived, which is given by an integral of a squared Gaussian process with a complicated covariance structure. For data‐based calibration of the test, a new nonparametric Bootstrap method is developed under the two‐sample measurement error framework and its validity is established. Finite sample performance of the proposed test is investigated through simulation studies, and the results show superior performance of the proposed method than the standard tests that exhibit inconsistent behavior. Finally, the proposed method was applied to real data sets from the National Health and Nutrition Examination Survey. AnRpackageMEtestis available through CRAN.

     
    more » « less
  5. Abstract

    The generalized semiparametric mixed varying‐coefficient effects model for longitudinal data can accommodate a variety of link functions and flexibly model different types of covariate effects, including time‐constant, time‐varying and covariate‐varying effects. The time‐varying effects are unspecified functions of time and the covariate‐varying effects are nonparametric functions of a possibly time‐dependent exposure variable. A semiparametric estimation procedure is developed that uses local linear smoothing and profile weighted least squares, which requires smoothing in the two different and yet connected domains of time and the time‐dependent exposure variable. The asymptotic properties of the estimators of both nonparametric and parametric effects are investigated. In addition, hypothesis testing procedures are developed to examine the covariate effects. The finite‐sample properties of the proposed estimators and testing procedures are examined through simulations, indicating satisfactory performances. The proposed methods are applied to analyze the AIDS Clinical Trial Group 244 clinical trial to investigate the effects of antiretroviral treatment switching in HIV‐infected patients before and after developing the T215Y antiretroviral drug resistance mutation.The Canadian Journal of Statistics47: 352–373; 2019 © 2019 Statistical Society of Canada

     
    more » « less