skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Pointwise Influence Matrices for Functional-Response Regression
Summary

We extend the notion of an influence or hat matrix to regression with functional responses and scalar predictors. For responses depending linearly on a set of predictors, our definition is shown to reduce to the conventional influence matrix for linear models. The pointwise degrees of freedom, the trace of the pointwise influence matrix, are shown to have an adaptivity property that motivates a two-step bivariate smoother for modeling nonlinear dependence on a single predictor. This procedure adapts to varying complexity of the nonlinear model at different locations along the function, and thereby achieves better performance than competing tensor product smoothers in an analysis of the development of white matter microstructure in the brain.

 
more » « less
NSF-PAR ID:
10486007
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
73
Issue:
4
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 1092-1101
Size(s):
p. 1092-1101
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    We propose and investigate an additive regression model for symmetric positive-definite matrix-valued responses and multiple scalar predictors. The model exploits the Abelian group structure inherited from either of the log-Cholesky and log-Euclidean frameworks for symmetric positive-definite matrices and naturally extends to general Abelian Lie groups. The proposed additive model is shown to connect to an additive model on a tangent space. This connection not only entails an efficient algorithm to estimate the component functions, but also allows one to generalize the proposed additive model to general Riemannian manifolds. Optimal asymptotic convergence rates and normality of the estimated component functions are established, and numerical studies show that the proposed model enjoys good numerical performance, and is not subject to the curse of dimensionality when there are multiple predictors. The practical merits of the proposed model are demonstrated through an analysis of brain diffusion tensor imaging data.

     
    more » « less
  2. Multi-modal data are prevalent in many scientific fields. In this study, we consider the parameter estimation and variable selection for a multi-response regression using block-missing multi-modal data. Our method allows the dimensions of both the responses and the predictors to be large, and the responses to be incomplete and correlated, a common practical problem in high-dimensional settings. Our proposed method uses two steps to make a prediction from a multi-response linear regression model with block-missing multi-modal predictors. In the first step, without imputing missing data, we use all available data to estimate the covariance matrix of the predictors and the cross-covariance matrix between the predictors and the responses. In the second step, we use these matrices and a penalized method to simultaneously estimate the precision matrix of the response vector, given the predictors, and the sparse regression parameter matrix. Lastly, we demonstrate the effectiveness of the proposed method using theoretical studies, simulated examples, and an analysis of a multi-modal imaging data set from the Alzheimer’s Disease Neuroimaging Initiative. 
    more » « less
  3. Abstract

    Accurately predicting species' range shifts in response to environmental change is paramount for understanding ecological processes and global change. In synthetic analyses, traits emerge as significant but weak predictors of species' range shifts across recent climate change. These studies assume linear responses to traits, while detailed empirical work often reveals trait responses that are unimodal and contain thresholds or other nonlinearities. We hypothesize that the use of linear modeling approaches fails to capture these nonlinearities and, therefore, may be under‐powering traits to predict range shifts. We evaluate the predictive performance of approaches that can capture nonlinear relationships (ridge‐regularized linear regression, support vector regression with linear and nonlinear kernels, and random forests). We apply our models using six multidecadal range shift datasets for plants, moths, marine fish, birds, and small mammals. We show that nonlinear approaches can perform better than least‐squares linear modeling in reproducing historical range shifts. Consistent with expectations, we identify dispersal and climatic niche traits as primary determinants of distribution shifts. Traits identified as important predictors and the direction of trait effects are generally consistent across models, but there are notable exceptions. Among important predictors, there are more consistent responses to climatic niches than dispersal ability. Modest improvements in predictability when accounting for nonlinearities and interactions, and the overall low amount of variance accounted for by trait predictors suggest limits to trait‐based statistical predictive frameworks.

     
    more » « less
  4. Abstract Objective

    Common obesity‐associated genetic variants at the fat mass and obesity‐associated (FTO) locus have been associated with appetitive behaviors and altered structure and function of frontostriatal brain regions. The authors aimed to investigate the influence ofFTOvariation on frontostriatal appetite circuits in early life.

    Methods

    Data were drawn from RESONANCE, a longitudinal study of early brain development. Growth trajectories of nucleus accumbens and frontal lobe volumes, as well as total gray matter and white matter volume, by risk allele (AA) carrier status onFTOsingle‐nucleotide polymorphism rs9939609 were examined in 228 children (102 female, 126 male) using magnetic resonance imaging assessments obtained from infancy through middle childhood. The authors fit functional concurrent regression models with brain volume outcomes over age as functional responses, andFTOgenotype, sex, BMIzscore, and maternal education were included as predictors.

    Results

    Bootstrap pointwise 95% CI for regression coefficient functions in the functional concurrent regression models showed that the AA group versus the group with no risk allele (TT) had greater nucleus accumbens volume (adjusted for total brain volume) in the interval of 750 to 2250 days (2–6 years).

    Conclusions

    These findings suggest that common genetic risk for obesity is associated with differences in early development of brain reward circuitry and argue for investigating dynamic relationships among genotype, brain, behavior, and weight throughout development.

     
    more » « less
  5. Abstract

    Materials with target nonlinear mechanical response can support the design of innovative soft robots, wearable devices, footwear, and energy‐absorbing systems, yet it is challenging to realize them. Here, mechanical metamaterials based on hinged quadrilaterals are used as a platform to realize target nonlinear mechanical responses. It is first shown that by changing the shape of the quadrilaterals, the amount of internal rotations induced by the applied compression can be tuned, and a wide range of mechanical responses is achieved. Next, a neural network is introduced that provides a computationally inexpensive relationship between the parameters describing the geometry and the corresponding stress–strain response. Finally, it is shown that by combining the neural network with an evolution strategy, one can efficiently identify geometries resulting in a wide range of target nonlinear mechanical responses and design optimized energy‐absorbing systems, soft robots, and morphing structures.

     
    more » « less