Copula is a popular method for modeling the dependence among marginal distributions in multivariate censored data. As many copula models are available, it is essential to check if the chosen copula model fits the data well for analysis. Existing approaches to testing the fitness of copula models are mainly for complete or right-censored data. No formal goodness-of-fit (GOF) test exists for interval-censored or recurrent events data. We develop a general GOF test for copula-based survival models using the information ratio (IR) to address this research gap. It can be applied to any copula family with a parametric form, such as the frequently used Archimedean, Gaussian, and D-vine families. The test statistic is easy to calculate, and the test procedure is straightforward to implement. We establish the asymptotic properties of the test statistic. The simulation results show that the proposed test controls the type-I error well and achieves adequate power when the dependence strength is moderate to high. Finally, we apply our method to test various copula models in analyzing multiple real datasets. Our method consistently separates different copula models for all these datasets in terms of model fitness.
more » « less- Award ID(s):
- 1916001
- PAR ID:
- 10486022
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Biometrics
- Volume:
- 79
- Issue:
- 3
- ISSN:
- 0006-341X
- Format(s):
- Medium: X Size: p. 1713-1725
- Size(s):
- p. 1713-1725
- Sponsoring Org:
- National Science Foundation
More Like this
-
Various goodness-of-fit tests are designed based on the so-called information matrix equivalence: if the assumed model is correctly specified, two information matrices that are derived from the likelihood function are equivalent. In the literature, this principle has been established for the likelihood function with fully observed data, but it has not been verified under the likelihood for censored data. In this manuscript, we prove the information matrix equivalence in the framework of semiparametric copula models for multivariate censored survival data. Based on this equivalence, we propose an information ratio (IR) test for the specification of the copula function. The IR statisticis constructed via comparing consistent estimates of the two information matrices. We derive the asymptotic distribution of the IR statistic and propose a parametric bootstrap procedure for the finite-sample P-value calculation. The performance of the IR test is investigated via a simulation study and a real data example.more » « less
-
ABSTRACT Binary spatial observations arise in environmental and ecological studies, where Markov random field (MRF) models are often applied. Despite the prevalence and the long history of MRF models for spatial binary data, appropriate model diagnostics have remained an unresolved issue in practice. A complicating factor is that such models involve neighborhood specifications, which are difficult to assess for binary data. To address this, we propose a formal goodness-of-fit (GOF) test for diagnosing an MRF model for spatial binary values. The test statistic involves a type of conditional Moran’s I based on the fitted conditional probabilities, which can detect departures in model form, including neighborhood structure. Numerical studies show that the GOF test can perform well in detecting deviations from a null model, with a focus on neighborhoods as a difficult issue. We illustrate the spatial test with an application to Besag’s historical endive data as well as the breeding pattern of grasshopper sparrows across Iowa.
-
Abstract The analysis of time series data with detection limits is challenging due to the high‐dimensional integral involved in the likelihood. Existing methods are either computationally demanding or rely on restrictive parametric distributional assumptions. We propose a semiparametric approach, where the temporal dependence is captured by parametric copula, while the marginal distribution is estimated non‐parametrically. Utilizing the properties of copulas, we develop a new copula‐based sequential sampling algorithm, which provides a convenient way to calculate the censored likelihood. Even without full parametric distributional assumptions, the proposed method still allows us to efficiently compute the conditional quantiles of the censored response at a future time point, and thus construct both point and interval predictions. We establish the asymptotic properties of the proposed pseudo maximum likelihood estimator, and demonstrate through simulation and the analysis of a water quality data that the proposed method is more flexible and leads to more accurate predictions than Gaussian‐based methods for non‐normal data.
The Canadian Journal of Statistics 47: 438–454; 2019 © 2019 Statistical Society of Canada -
Summary We introduce an L2-type test for testing mutual independence and banded dependence structure for high dimensional data. The test is constructed on the basis of the pairwise distance covariance and it accounts for the non-linear and non-monotone dependences among the data, which cannot be fully captured by the existing tests based on either Pearson correlation or rank correlation. Our test can be conveniently implemented in practice as the limiting null distribution of the test statistic is shown to be standard normal. It exhibits excellent finite sample performance in our simulation studies even when the sample size is small albeit the dimension is high and is shown to identify non-linear dependence in empirical data analysis successfully. On the theory side, asymptotic normality of our test statistic is shown under quite mild moment assumptions and with little restriction on the growth rate of the dimension as a function of sample size. As a demonstration of good power properties for our distance-covariance-based test, we further show that an infeasible version of our test statistic has the rate optimality in the class of Gaussian distributions with equal correlation.
-
Summary We propose a novel method for testing serial independence of object-valued time series in metric spaces, which are more general than Euclidean or Hilbert spaces. The proposed method is fully nonparametric, free of tuning parameters and can capture all nonlinear pairwise dependence. The key concept used in this paper is the distance covariance in metric spaces, which is extended to the autodistance covariance for object-valued time series. Furthermore, we propose a generalized spectral density function to account for pairwise dependence at all lags and construct a Cramér–von Mises-type test statistic. New theoretical arguments are developed to establish the asymptotic behaviour of the test statistic. A wild bootstrap is also introduced to obtain the critical values of the nonpivotal limiting null distribution. Extensive numerical simulations and two real data applications on cumulative intraday returns and human mortality data are conducted to illustrate the effectiveness and versatility of our proposed test.