skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Different reference frames on different axes: Space and language in indigenous Amazonians
Spatial cognition is central to human behavior, but the way people conceptualize space varies within and across groups for unknown reasons. Here, we found that adults from an indigenous Bolivian group used systematically different spatial reference frames on different axes, according to known differences in their discriminability: In both verbal and nonverbal tests, participants preferred allocentric (i.e., environment-based) space on the left-right axis, where spatial discriminations (like “b” versus “d”) are notoriously difficult, but the same participants preferred egocentric (i.e., body-based) space on the front-back axis, where spatial discrimination is relatively easy. The results (i) establish a relationship between spontaneous spatial language and memory across axes within a single culture, (ii) challenge the claim that each language group has a predominant spatial reference frame at a given scale, and (iii) suggest that spatial thinking and language may both be shaped by spatial discrimination abilities, as they vary across cultures and contexts.  more » « less
Award ID(s):
2105434
PAR ID:
10486024
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Science Advances
Date Published:
Journal Name:
Science Advances
Volume:
8
Issue:
47
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. T. Fitch; C. Lamm; H. Leder; K. Tessmar (Ed.)
    The physical properties of space may be universal, but the way people conceptualize space is not. In some groups, people tend to use egocentric space (e.g. left, right) to encode the loca- tions of objects, while in other groups, people encode the same spatial scene using allocentric space (e.g. upriver, downriver). These different spatial Frames of Reference (FoRs) character- ize the way people talk about spatial relations and the way they think about them, even when they are not using language. Al- though spatial language and spatial thinking tend to covary, the root causes of this variation are unclear. Here we propose that this variation in FoR use reflects the spatial discriminability of the relevant spatial continua. In an initial test of this proposal in a group of indigenous Bolivians, we compared FoR use across spatial axes that are known to differ in discriminabil- ity. In two non-verbal tests, participants spontaneously used different FoRs on different spatial axes: On the lateral axis, where egocentric (left-right) discrimination is difficult, their behavior was predominantly allocentric; on the sagittal axis, where egocentric (front-back) discrimination is relatively easy, their behavior was predominantly egocentric. These findings support the spatial discriminability hypothesis, which may ex- plain variation in spatial concepts not only across axes, but also across groups, between individuals, and over development. 
    more » « less
  2. Tecumseh Fitch; Claus Lamm; Helmut Leder; Kristin Tessmar-Raible (Ed.)
    Spatial language and cognition vary across contexts. In some groups, people tend to use egocentric space (e.g. left, right) to encode the locations of objects, while in other groups, people use allocentric space (e.g. upriver, downriver) to describe the same spatial scene. These different spatial Frames of Reference (FoRs) characterize both the way people talk about spatial relations and the way they think about them, even when they are not using language. These patterns of spatial language and spatial thinking tend to covary, but the root causes of this variation are unclear. Here we propose that this variation in FoR use reflects variation in the spatial discriminability of the relevant spatial continua. In an initial test of this proposal, we compared FoR use across spatial axes that are known to differ in discriminability. In two non-verbal tests, a group of indigenous Bolivians used different FoRs on different spatial axes; on the lateral axis, where egocentric (left-right) discrimination is difficult, their behavior was predominantly allocentric; on the sagittal axis, where egocentric (front-back) discrimination is relatively easy, their behavior was predominantly egocentric. These findings support the spatial discriminability hypothesis, which may explain variation in spatial concepts not only across axes, but also across groups, between individuals, and over development. 
    more » « less
  3. M. Goldwater; F. Anggoro; B. Hayes; D Ong (Ed.)
    Spatial cognition is central to human behavior, but the way we conceptualize space varies over development and across cultures. When remembering the locations or movements of nearby objects, educated adults predominantly rely on a body-based spatial reference frame (e.g. to the left), whereas other groups prefer environment-based frames (e.g. toward the road), at least in some contexts. We propose that this varia- tion in spatial thinking partly reflects differences in the abil- ity to reliably discriminate left-right space, an ability that is common only among educated adults. To evaluate this pro- posal, here we tested US children’s spontaneous use of spatial reference frames on two axes. On the front-back axis, where spatial discrimination was relatively high, participants remem- bered object locations and movement directions using a body- based reference frame. On the left-right axis, where their spa- tial discrimination was significantly worse, the same partici- pants preferred environment-based reference frames. This re- versal reveals remarkable flexibility in children’s spontaneous use of spatial reference frames, extends findings in indigenous adults, and clarifies the likely mechanisms underlying spatial cognitive diversity. 
    more » « less
  4. Spatial ability is the ability to generate, store, retrieve, and transform visual information to mentally represent a space and make sense of it. This ability is a critical facet of human cognition that affects knowledge acquisition, productivity, and workplace safety. Although having improved spatial ability is essential for safely navigating and perceiving a space on earth, it is more critical in altered environments of other planets and deep space, which may pose extreme and unfamiliar visuospatial conditions. Such conditions may range from microgravity settings with the misalignment of body and visual axes to a lack of landmark objects that offer spatial cues to perceive size, distance, and speed. These altered visuospatial conditions may pose challenges to human spatial cognitive processing, which assists humans in locating objects in space, perceiving them visually, and comprehending spatial relationships between the objects and surroundings. The main goal of this paper is to examine if eye-tracking data of gaze pattern can indicate whether such altered conditions may demand more mental efforts and attention. The key dimensions of spatial ability (i.e., spatial visualization, spatial relations, and spatial orientation) are examined under the three simulated conditions: (1) aligned body and visual axes (control group); (2) statically misaligned body and visual axes (experiment group I); and dynamically misaligned body and visual axes (experiment group II). The three conditions were simulated in Virtual Reality (VR) using Unity 3D game engine. Participants were recruited from Texas A&M University student population who wore HTC VIVE Head-Mounted Displays (HMDs) equipped with eye-tracking technology to work on three spatial tests to measure spatial visualization, orientation, and relations. The Purdue Spatial Visualization Test: Rotations (PSVT: R), the Mental Cutting Test (MCT), and the Perspective Taking Ability (PTA) test were used to evaluate the spatial visualization, spatial relations, and spatial orientation of 78 participants, respectively. For each test, gaze data was collected through Tobii eye-tracker integrated in the HTC Vive HMDs. Quick eye movements, known as saccades, were identified by analyzing raw eye-tracking data using the rate of change of gaze position over time as a measure of mental effort. The results showed that the mean number of saccades in MCT and PSVT: R tests was statistically larger in experiment group II than in the control group or experiment group I. However, PTA test data did not meet the required assumptions to compare the mean number of saccades in the three groups. The results suggest that spatial relations and visualization may require more mental effort under dynamically misaligned idiotropic and visual axes than aligned or statically misaligned idiotropic and visual axes. However, the data could not reveal whether spatial orientation requires more/less mental effort under aligned, statically misaligned, and dynamically misaligned idiotropic and visual axes. The results of this study are important to understand how altered visuospatial conditions impact spatial cognition and how simulation- or game-based training tools can be developed to train people in adapting to extreme or altered work environments and working more productively and safely. 
    more » « less
  5. Abstract Occipital cortices of different sighted people contain analogous maps of visual information (e.g. foveal vs. peripheral). In congenital blindness, “visual” cortices respond to nonvisual stimuli. Do visual cortices of different blind people represent common informational maps? We leverage naturalistic stimuli and inter-subject pattern similarity analysis to address this question. Blindfolded sighted (n = 22) and congenitally blind (n = 22) participants listened to 6 sound clips (5–7 min each): 3 auditory excerpts from movies; a naturalistic spoken narrative; and matched degraded auditory stimuli (Backwards Speech, scrambled sentences), during functional magnetic resonance imaging scanning. We compared the spatial activity patterns evoked by each unique 10-s segment of the different auditory excerpts across blind and sighted people. Segments of meaningful naturalistic stimuli produced distinctive activity patterns in frontotemporal networks that were shared across blind and across sighted individuals. In the blind group only, segment-specific, cross-subject patterns emerged in visual cortex, but only for meaningful naturalistic stimuli and not Backwards Speech. Spatial patterns of activity within visual cortices are sensitive to time-varying information in meaningful naturalistic auditory stimuli in a broadly similar manner across blind individuals. 
    more » « less