skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Role of Phosphorus Type and Biodegradable Polymer on Phosphorus Fate and Efficacy in a Plant–Soil System
Phosphorus (P) is critical for crop production but has a high nutrient use inefficiency. Tomato was grown in soil amended with five P-sources, used as-is, or embedded within a biodegradable polymer, polyhydroxyalkanoate (PHA). Correlation analysis identified treatments that maintain plant growth, improve bioavailable soil P, and reduce P loss. Three performance classes were identified: (i) micro- and nanohydroxyapatite, which did not increase bioavailable P, plant P-uptake, or change P in runoff/leaching compared to controls; (ii) monocalcium phosphate (MCP), dicalcium phosphate (DCP), calcium pyrophosphate nanoparticles (CAP), and PHA-MCP that increased P-uptake and/or bioavailable P but also increased P loss in runoff/leaching; and (iii) PHA-DCP and PHA-CAP, where increased bioavailable P and plant P-uptake were achieved with minimal P loss in runoff/leaching. In addition to identifying treatments that maintain plant growth, increase bioavailable P, and minimize nutrient loss, correlation plots also revealed that (i) bioavailable P was a good indicator of plant P-uptake; (ii) leached P could be predicted from water solubility; and (iii) P loss through runoff versus leaching showed similar trends. This study highlights that biopolymers can promote plant P-uptake and improve bioavailable soil P, with implications for mitigating the negative environmental impacts of P loss from agricultural systems.  more » « less
Award ID(s):
2001611
PAR ID:
10486053
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of Agricultural and Food Chemistry
Volume:
71
Issue:
44
ISSN:
0021-8561
Page Range / eLocation ID:
16493 to 16503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While biopolymers have the potential to enhance agrochemical delivery and mitigate environmental impacts such as runoff, previous plant studies have often been limited to examining single biopolymers in isolation. This approach has hindered effective comparisons of plant outcomes due to variations in plant type, growth duration, and soil characteristics. The current study addresses this gap by incorporating six separate milled biopolymers: pectin, starch, chitosan, polycaprolactone (PCL), polylactic acid (PLA), or polyhydroxybutyrate (PHB) into soil and directly comparing their impacts on tomato (Solanum lycopersicum) plants cultivated under identical environmental parameters. Plant outcomes were also studied when biopolymers were modified via the inclusion of two phosphorus (P) salts, forming two types of Polymer-P-containing salt composites with amorphous CaPO4 (CaP) and CaHPO4 (DCP). Our results revealed that chitosan-based treatments significantly improved tomato root and shoot biomass, with increases of 200–300% compared to the control plants. Chitosan-CaP and Chitosan-DCP also enhanced P uptake, though the effect was significantly more pronounced in the former, suggesting a synergy between chitosan and CaP. Neither Chitosan-P-containing salt treatment, however, mitigated P leaching from soil when compared to CaP or DCP applied in isolation. The two most hydrophilic biopolymers, pectin and starch, as well as their P-salt-containing counterparts, showed the most substantial reductions in biomass (∼80%) with respect to control plants, while similarly lowering P uptake and P retention in soil compared to CaP- and DCP-only plants. PCL- and PHB-based treatments also adversely influenced biomass and plant P, though these effects were not as drastic as those observed with pectin and starch. PLA-based soil amendments had no effect on any plant performance metric, though PLA-CaP, specifically, was the only treatment to appreciably mitigate P leaching (−63%). Based on these findings, subsequent tomato growth experiments were conducted over a longer 8-week period with CaP, DCP, Chitosan, Chitosan-CaP, and Chitosan-DCP. While all chitosan-treated plants showed similar enhancements in biomass, plants treated with Chitosan-CaP and Chitosan-DCP were the only ones to fruit, demonstrating the benefit of using chitosan in conjunction with a P source as compared to either treatment in isolation. These findings contribute to an expanding body of evidence that biopolymer carriers can offer a more sustainable approach to improving the precision of nutrient delivery, while also highlighting the pivotal role of biopolymer and nutrient type in the development of these carriers. 
    more » « less
  2. Phosphorus (P) loss from agro-ecosystems impinges upon P use efficiency by plants and thereby constitutes both agronomic and environmental nuisances. Herein, we report on the potential for controlling P leaching loss and application in crop fertilization through repurposing and nano-functionalizing tripolyphosphate (TPP) as a sole P source. The developed TPP-Chitosan and TPP-Chitosan-ZnO nanofertilizers exhibited positive surface charges, 5.8 and 13.8 mV, and hydrodynamic sizes of 430 and 301 nm, respectively. In soil, nanoformulations of TPP-Chitosan and TPP-Chitosan-ZnO significantly reduced cumulative P leaching during 72 h, reaching 91 and 97% reductions, respectively, compared to a conventional fertilizer, monoammonium phosphate (MAP). Cumulative P leaching after 72 h from these nanofertilizers was, respectively, 84 and 95% lower than from TPP alone. TPP-Chitosan-ZnO was, overall, 65% more effective in reducing P leaching, compared to TPP-Chitosan. Relative to MAP, the wheat plant height was significantly increased by TPP-Chitosan-ZnO by 33.0%. Compared to MAP, TPP-Chitosan and TPP-Chitosan-ZnO slightly increased wheat grain yield by 21 and 30%, respectively. Notably, TPP-Chitosan-ZnO significantly decreased shoot P levels, by 35.5, 47, and 45%, compared to MAP, TPP, and TPP-Chitosan, respectively. Zn release over 72 h from TPP-Chitosan-ZnO was considerably lower, compared to a control, ZnO nanoparticles, and averaged, respectively, 34.7 and 0.065 mg/L, which was 534 times higher for the former. Grain Zn was significantly higher in the TPP-Chitosan treatment, relative to MAP. TPP-Chitosan also significantly mobilized the resident K, S, Mg, and Ca from soil into the plant, helping to improve the overall nutritional quality and supporting the role of chitosan in nutrient mobilization. Taken together, our data highlight the potential for repurposing a non-fertilizer P material, TPP, for agricultural and environmental applications and the effect of applying nanotechnology on such outcomes. Broadly speaking, the reduction in P loss is critical for controlling the eutrophication of water bodies due to nutrient overload and for sustaining the dwindling global P resources. 
    more » « less
  3. Abstract Background and aimsA synergistic response of aboveground plant biomass production to combined nitrogen (N) and phosphorus (P) addition has been observed in many ecosystems, but the underlying mechanisms and their relative importance are not well known. We aimed at evaluating several mechanisms that could potentially cause the synergistic growth response, such as changes in plant biomass allocation, increased N and P uptake by plants, and enhanced ecosystem nutrient retention. MethodsWe studied five grasslands located in Europe and the USA that are subjected to an element addition experiment composed of four treatments: control (no element addition), N addition, P addition, combined NP addition. ResultsCombined NP addition increased the total plant N stocks by 1.47 times compared to the N treatment, while total plant P stocks were 1.62 times higher in NP than in single P addition. Further, higher N uptake by plants in response to combined NP addition was associated with reduced N losses from the soil (evaluated based on soil δ15N) compared to N addition alone, indicating a higher ecosystem N retention. In contrast, the synergistic growth response was not associated with significant changes in plant resource allocation. ConclusionsOur results demonstrate that the commonly observed synergistic effect of NP addition on aboveground biomass production in grasslands is caused by enhanced N uptake compared to single N addition, and increased P uptake compared to single P addition, which is associated with a higher N and P retention in the ecosystem. 
    more » « less
  4. Glass, Jennifer B. (Ed.)
    ABSTRACT On the roots of wetland plants such as rice, Fe(II) oxidation forms Fe(III) oxyhydroxide-rich plaques that modulate plant nutrient and metal uptake. The microbial roles in catalyzing this oxidation have been debated and it is unclear if these iron-oxidizers mediate other important biogeochemical and plant interactions. To investigate this, we studied the microbial communities, metagenomes, and geochemistry of iron plaque on field-grown rice, plus the surrounding rhizosphere and bulk soil. Plaque iron content (per mass root) increased over the growing season, showing continuous deposition. Analysis of 16S rRNA genes showed abundant Fe(II)-oxidizing and Fe(III)-reducing bacteria (FeOB and FeRB) in plaque, rhizosphere, and bulk soil. FeOB were enriched in relative abundance in plaque, suggesting FeOB affinity for the root surface. Gallionellaceae FeOBSideroxydanswere enriched during vegetative and early reproductive rice growth stages, while aGallionellawas enriched during reproduction through grain maturity, suggesting distinct FeOB niches over the rice life cycle. FeRBAnaeromyxobacterandGeobacterincreased in plaque later, during reproduction and grain ripening, corresponding to increased plaque iron. Metagenome-assembled genomes revealed that Gallionellaceae may grow mixotrophically using both Fe(II) and organics. TheSideroxydansare facultative, able to use non-Fe substrates, which may allow colonization of rice roots early in the season. FeOB genomes suggest adaptations for interacting with plants, including colonization, plant immunity defense, utilization of plant organics, and nitrogen fixation. Taken together, our results strongly suggest that rhizoplane and rhizosphere FeOB can specifically associate with rice roots, catalyzing iron plaque formation, with the potential to contribute to plant growth. IMPORTANCEIn waterlogged soils, iron plaque forms a reactive barrier between the root and soil, collecting phosphate and metals such as arsenic and cadmium. It is well established that iron-reducing bacteria solubilize iron, releasing these associated elements. In contrast, microbial roles in plaque formation have not been clear. Here, we show that there is a substantial population of iron oxidizers in plaque, and furthermore, that these organisms (SideroxydansandGallionella) are distinguished by genes for plant colonization and nutrient fixation. Our results suggest that iron-oxidizing and iron-reducing bacteria form and remodel iron plaque, making it a dynamic system that represents both a temporary sink for elements (P, As, Cd, C, etc.) as well as a source. In contrast to abiotic iron oxidation, microbial iron oxidation results in coupled Fe-C-N cycling, as well as microbe-microbe and microbe-plant ecological interactions that need to be considered in soil biogeochemistry, ecosystem dynamics, and crop management. 
    more » « less
  5. Phosphorus (P) is an essential nutrient for sustaining life and agricultural production. Transformation of readily available P into forms that are unavailable to plants adds costs to P replenishment, which eventually translates into lower agronomic benefits and potential loss of soil P into runoff may degrade water quality. Therefore, understanding the sources and pathways of the formation of residual P pools in soils is useful information needed for the development of any technological or management efforts to minimize or inhibit the formation of such P pool and thus maximize availability to plants. In this research, we paired phosphate oxygen isotope ratios (δ18OP) with solid-state 31P NMR and quantitative XRD techniques along with general soil chemistry methods to identify the precipitation pathways of acid-extracted inorganic P (Pi) pools in an agricultural soil. Based on the comparison of isotope values of 0.5 mol L−1 NaOH-Pi, 1 mol L−1 HCl-Pi, and 10 mol L−1 HNO3-Pi pools and correlations of associated elements (Ca, Fe, and Al) in these pools, the HNO3-Pi pool appears most likely to be transformed from the NaOH-Pi pool. A narrow range of isotope values of acid-Pi pools in shallow (tilling depth) and below (where physical mixing is absent) is intriguing but likely suggests leaching of particle-bound P in deeper soils. Overall, these findings provide an improved understanding of the sources, transport, and transformation of acid-Pi pools in agricultural soils and further insights into the buildup of legacy P in soils. 
    more » « less