skip to main content


Title: Common Reducing Subspace Model and Network Alternation Analysis
Abstract

Motivated by brain connectivity analysis and many other network data applications, we study the problem of estimating covariance and precision matrices and their differences across multiple populations. We propose a common reducing subspace model that leads to substantial dimension reduction and efficient parameter estimation. We explicitly quantify the efficiency gain through an asymptotic analysis. Our method is built upon and further extends a nascent technique, the envelope model, which adopts a generalized sparsity principle. This distinguishes our proposal from most xisting covariance and precision estimation methods that assume element-wise sparsity. Moreover, unlike most existing solutions, our method can naturally handle both covariance and precision matrices in a unified way, and work with matrix-valued data. We demonstrate the efficacy of our method through intensive simulations, and illustrate the method with an autism spectrum disorder data analysis.

 
more » « less
NSF-PAR ID:
10486148
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
75
Issue:
4
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 1109-1120
Size(s):
["p. 1109-1120"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It is increasingly interesting to model the relationship between two sets of high-dimensional measurements with potentially high correlations. Canonical correlation analysis (CCA) is a classical tool that explores the dependency of two multivariate random variables and extracts canonical pairs of highly correlated linear combinations. Driven by applications in genomics, text mining, and imaging research, among others, many recent studies generalize CCA to high-dimensional settings. However, most of them either rely on strong assumptions on covariance matrices, or do not produce nested solutions. We propose a new sparse CCA (SCCA) method that recasts high-dimensional CCA as an iterative penalized least squares problem. Thanks to the new iterative penalized least squares formulation, our method directly estimates the sparse CCA directions with efficient algorithms. Therefore, in contrast to some existing methods, the new SCCA does not impose any sparsity assumptions on the covariance matrices. The proposed SCCA is also very flexible in the sense that it can be easily combined with properly chosen penalty functions to perform structured variable selection and incorporate prior information. Moreover, our proposal of SCCA produces nested solutions and thus provides great convenient in practice. Theoretical results show that SCCA can consistently estimate the true canonical pairs with an overwhelming probability in ultra-high dimensions. Numerical results also demonstrate the competitive performance of SCCA.

     
    more » « less
  2. Abstract

    Spatial statistics often involves Cholesky decomposition of covariance matrices. To ensure scalability to high dimensions, several recent approximations have assumed a sparse Cholesky factor of the precision matrix. We propose a hierarchical Vecchia approximation, whose conditional-independence assumptions imply sparsity in the Cholesky factors of both the precision and the covariance matrix. This remarkable property is crucial for applications to high-dimensional spatiotemporal filtering. We present a fast and simple algorithm to compute our hierarchical Vecchia approximation, and we provide extensions to nonlinear data assimilation with non-Gaussian data based on the Laplace approximation. In several numerical comparisons, including a filtering analysis of satellite data, our methods strongly outperformed alternative approaches.

     
    more » « less
  3. We consider the problem of estimating differences in two Gaussian graphical models (GGMs) which are known to have similar structure. The GGM structure is encoded in its precision (inverse covariance) matrix. In many applications one is interested in estimating the difference in two precision matrices to characterize underlying changes in conditional dependencies of two sets of data. Most existing methods for differential graph estimation are based on a lasso penalized loss function. In this paper, we analyze a log-sum penalized D-trace loss function approach for differential graph learning. An alternating direction method of multipliers (ADMM) algorithm is presented to optimize the objective function. Theoretical analysis establishing consistency in estimation in high-dimensional settings is provided. We illustrate our approach using a numerical example where log-sum penalized D-trace loss significantly outperforms lasso-penalized D-trace loss as well as smoothly clipped absolute deviation (SCAD) penalized D-trace loss. 
    more » « less
  4. Abstract

    Many modern algorithms for inverse problems and data assimilation rely on ensemble Kalman updates to blend prior predictions with observed data. Ensemble Kalman methods often perform well with a small ensemble size, which is essential in applications where generating each particle is costly. This paper develops a non-asymptotic analysis of ensemble Kalman updates, which rigorously explains why a small ensemble size suffices if the prior covariance has moderate effective dimension due to fast spectrum decay or approximate sparsity. We present our theory in a unified framework, comparing several implementations of ensemble Kalman updates that use perturbed observations, square root filtering and localization. As part of our analysis, we develop new dimension-free covariance estimation bounds for approximately sparse matrices that may be of independent interest.

     
    more » « less
  5. Abstract

    Gaussian process (GP) is a staple in the toolkit of a spatial statistician. Well‐documented computing roadblocks in the analysis of large geospatial datasets using GPs have now largely been mitigated via several recent statistical innovations. Nearest neighbor Gaussian process (NNGP) has emerged as one of the leading candidates for such massive‐scale geospatial analysis owing to their empirical success. This article reviews the connection of NNGP to sparse Cholesky factors of the spatial precision (inverse‐covariance) matrix. Focus of the review is on these sparse Cholesky matrices which are versatile and have recently found many diverse applications beyond the primary usage of NNGP for fast parameter estimation and prediction in the spatial (generalized) linear models. In particular, we discuss applications of sparse NNGP Cholesky matrices to address multifaceted computational issues in spatial bootstrapping, simulation of large‐scale realizations of Gaussian random fields, and extensions to nonparametric mean function estimation of a GP using random forests. We also review a sparse‐Cholesky‐based model for areal (geographically aggregated) data that addresses long‐established interpretability issues of existing areal models. Finally, we highlight some yet‐to‐be‐addressed issues of such sparse Cholesky approximations that warrant further research.

    This article is categorized under:

    Algorithms and Computational Methods > Algorithms

    Algorithms and Computational Methods > Numerical Methods

     
    more » « less