Abstract Blue phases (BPs), formed through the self‐assembly of chiral liquid crystal molecules into 3D nanolattices with cubic symmetries, exhibit dynamic photonic bandgaps in the visible spectrum, offering transformative opportunities for advanced optical circuits, sensing and communication technologies. However, their thermal stability is restricted to a narrow temperature range (0.5–1.0 K), limiting practical applications. Polymer stabilization of bulk BPs has extended thermal stability but often compromises the dynamic behavior essential for fast‐response functionalities. Here, experimental and computational approaches are integrated to investigate the effect of curvature and interfacial interactions on BP polymer stabilization. It is demonstrated that photo‐polymerization of reactive monomers within BP microdroplets produces polymer shells, a few hundred nanometers thick, featuring BPs disclination network nano‐architecture. This nano‐architected shell provides surface topology and anchoring conditions to direct BP nucleation and growth, with the degree of curvature dictating the stabilized BP lattice structure within microdroplets. Remarkably, while enhancing thermal stability across a broad temperature range, this polymer shell enables reconfigurable crystal‐to‐crystal transformations in stabilized BP droplets. This work introduces a novel approach to tailoring BP properties by leveraging curvature, confinement, and interfacial interactions to create thermally stable, reconfigurable photonic crystals, paving the way for adaptive sensors and next‐generation fast‐response optical devices.
more »
« less
Photonic features of blue phase liquid crystals under curved confinement
Blue phase (BP) liquid crystals represent a fascinating state of soft matter that showcases unique optical and electro-optical properties. Existing between chiral nematic and isotropic phases, BPs are characterized by a three-dimensional cubic lattice structure resulting in selective Bragg reflections of light and consequent vivid structural colors. However, the practical realization of these material systems is hampered by their narrow thermal stability and multi-domain crystalline nature. This feature article provides an overview of the efforts devoted to stabilizing these phases and creating monodomain structures. In particular, it delves into the complex relationship between geometrical confinement, induced curvature, and the structural stability and photonic features of BPs. Understanding the interaction of curved confinement and structural stability of BPs proves crucially important for the integration of these materials into flexible and miniaturized devices. By shedding light on these critical aspects, this feature review aims to highlight the significance of understanding the coupling effects of physical and mechanical forces on the structural stability of these systems, which can pave the way for the development of efficient and practical devices based on BP liquid crystals.
more »
« less
- Award ID(s):
- 2146428
- PAR ID:
- 10486346
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 59
- Issue:
- 82
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 12231 to 12247
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Liquid crystals are important components of optical technologies. Cuboidal crystals consisting of chiral liquid crystals−the so-called blue phases (BPs),are of particular interest due to their crystalline structures and fast response times, but it is critical that control be gained over their phase behavior as well as the underlying dislocations and grain boundaries that arise in such systems. Blue phases exhibit cubic crystalline symmetries with lattice parameters in the 100 nm range and a network of disclination lines that can be polymerized to widen the range of temperatures over which they occur. Here, we introduce the concept of strain-controlled polymerization of BPs under confinement, which enables formation of strain-correlated stabilized morphologies that, under some circumstances, can adopt perfect single-crystal monodomain structures and undergo reversible crystal-to-crystal transformations, even if their disclination lines are polymerized. We have used super-resolution laser confocal microscopy to reveal the periodic structure and the lattice planes of the strain and polymerization stabilized BPs in 3D real space. Our experimental observations are supported and interpreted by relying on theory and computational simulations in terms of a free energy functional for a tensorial order parameter. Simulations are used to determine the orientation of the lattice planes unambiguously.The findings presented her eoffer opportunities for engineering optical devices based on single-crystal, polymer-stabilized BPs whose inheren tliquid nature, fast dynamics, and long-range crystalline order can be fully exploited.more » « less
-
Abstract The blue phase of liquid crystals (BPLCs) with a cubic lattice of disclination lines and 3D nanostructure enables the modulation of photonic bandgap thus casting them in the category of photonic crystals. Its unique nature promises applications in display technologies, electro‐optics, and sensors. To integrate these ordered materials into wearable devices a fundamental understanding of curvature, and spatial confinement is necessary. Although continuous confinement in flat geometries have been studied, confining curvature has shown to induce strong destabilization effects on the cubic structure and formation of topological defects, thereby deteriorating their optical performance. Moreover, limitations in controlling the curvature of droplets further hinder studies of nucleation and growth of BPLCs. To address these challenges, micro‐scale patterned surfaces of concentric cylinders are exploited to systematically control curvatures. The impact of curvature on the confined BPLCs is revealed in terms of phase transition temperature, nucleation and growth, morphology, as well as phase transformation. This research offers valuable insights into the stability, and structural characteristics of BPLCs in adaptive photonic devices, paving the way for future advancements in flexible displays, sensors, and other technologies leveraging liquid crystal (LC) materials.more » « less
-
Polar van der Waals (vdW) crystals, composed of atomic layers held together by vdW forces, can host phonon polaritons—quasiparticles arising from the interaction between photons in free-space light and lattice vibrations in polar materials. These crystals offer advantages such as easy fabrication, low Ohmic loss, and optical confinement. Recently, hexagonal boron nitride (hBN), known for having hyperbolicity in the mid-infrared range, has been used to explore multiple modes with high optical confinement. This opens possibilities for practical polaritonic nanodevices with subdiffractional resolution. However, polariton waves still face exposure to the surrounding environment, leading to significant energy losses. In this work, we propose a simple approach to inducing a hyperbolic phonon polariton (HPhP) waveguide in hBN by incorporating a low dielectric medium, ZrS2. The low dielectric medium serves a dual purpose—it acts as a pathway for polariton propagation, while inducing high optical confinement. We establish the criteria for the HPhP waveguide in vdW heterostructures with various thicknesses of ZrS2 through scattering-type scanning near-field optical microscopy (s-SNOM) and by conducting numerical electromagnetic simulations. Our work presents a feasible and straightforward method for developing practical nanophotonic devices with low optical loss and high confinement, with potential applications such as energy transfer, nano-optical integrated circuits, light trapping, etc.more » « less
-
Abstract Liquid crystal (LC) emulsions represent a class of confined soft matter that exhibit exotic internal organizations and size‐dependent properties, including responses to chemical and physical stimuli. Past studies have explored micrometer‐scale LC emulsion droplets but little is known about LC ordering within submicrometer‐sized droplets. This paper reports experiments and simulations that unmask the consequences of confinement in nanoemulsions on strongly chiral LCs that form bulk cholesteric and blue phases (BPs). A method based on light scattering is developed to characterize phase transitions of LCs within the nanodroplets. For droplets with a radius to the pitch ratio (Rv/p0) as small as 2/3, the BP‐to‐cholesteric transition is substantially suppressed, leading to a threefold increase of the BP temperature interval relative to bulk behavior. Complementary simulations align with experimental findings and reveal the dominant role of chiral elastic energy. ForRv/p0 ≈1/3, a single LC phase forms below the clearing point, with simulations revealing the new configuration to contain a τ−1/2disclination that extends across the nanodroplet. These findings are discussed in the context of mechanisms by which polymer networks stabilize BPs and, more broadly, for the design of nanoconfined soft matter.more » « less
An official website of the United States government

