The diploid anuran Xenopus tropicalis has emerged as a key research model in cell and developmental biology. To enhance the usefulness of this species, we developed methods for generating immortal cell lines from Nigerian strain (NXR_1018, RRID:SCR_013731) X. tropicalis embryos. We generated 14 cell lines that were propagated for several months. We selected four morphologically distinct lines, XTN-6, XTN-8, XTN-10 and XTN-12 for further characterization. Karyotype analysis revealed that three of the lines, XTN-8, XTN-10 and XTN-12 were primarily diploid. XTN-6 cultures showed a consistent mixed population of diploid cells, cells with chromosome 8 trisomy, and cells containing a tetraploid content of chromosomes. The lines were propagated using conventional culture methods as adherent cultures at 30°C in a simple, diluted L-15 medium containing fetal bovine serum without use of a high CO 2 incubator. Transcriptome analysis indicated that the four lines were distinct lineages. These methods will be useful in the generation of cell lines from normal and mutant strains of X. tropicalis as well as other species of Xenopus .
more »
« less
Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs
Abstract Frogs are an ecologically diverse and phylogenetically ancient group of anuran amphibians that include important vertebrate cell and developmental model systems, notably the genusXenopus. Here we report a high-quality reference genome sequence for the western clawed frog,Xenopus tropicalis, along with draft chromosome-scale sequences of three distantly related emerging model frog species,Eleutherodactylus coqui,Engystomops pustulosus, andHymenochirus boettgeri. Frog chromosomes have remained remarkably stable since the Mesozoic Era, with limited Robertsonian (i.e., arm-preserving) translocations and end-to-end fusions found among the smaller chromosomes. Conservation of synteny includes conservation of centromere locations, marked by centromeric tandem repeats associated with Cenp-a binding surrounded by pericentromeric LINE/L1 elements. This work explores the structure of chromosomes across frogs, using a dense meiotic linkage map forX. tropicalisand chromatin conformation capture (Hi-C) data for all species. Abundant satellite repeats occupy the unusually long (~20 megabase) terminal regions of each chromosome that coincide with high rates of recombination. Both embryonic and differentiated cells show reproducible associations of centromeric chromatin and of telomeres, reflecting a Rabl-like configuration. Our comparative analyses reveal 13 conserved ancestral anuran chromosomes from which contemporary frog genomes were constructed.
more »
« less
- Award ID(s):
- 2122620
- PAR ID:
- 10486376
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.more » « less
-
Kelleher, Erin S (Ed.)Centromeres reside in rapidly evolving, repeat-rich genomic regions, despite their essential function in chromosome segregation. Across organisms, centromeres are rich in selfish genetic elements such as transposable elements and satellite DNAs that can bias their transmission through meiosis. However, these elements still need to cooperate at some level and contribute to, or avoid interfering with, centromere function. To gain insight into the balance between conflict and cooperation at centromeric DNA, we take advantage of the close evolutionary relationships within theDrosophila simulansclade—D.simulans,D.sechellia, andD.mauritiana—and their relative,D.melanogaster. Using chromatin profiling combined with high-resolution fluorescence in situ hybridization on stretched chromatin fibers, we characterize all centromeres across these species. We discovered dramatic centromere reorganization involving recurrent shifts between retroelements and satellite DNAs over short evolutionary timescales. We also reveal the recent origin (<240 Kya) of telocentric chromosomes inD.sechellia, where the X and fourth centromeres now sit on telomere-specific retroelements. Finally, the Y chromosome centromeres, which are the only chromosomes that do not experience female meiosis, do not show dynamic cycling between satDNA and TEs. The patterns of rapid centromere turnover in these species are consistent with genetic conflicts in the female germline and have implications for centromeric DNA function and karyotype evolution. Regardless of the evolutionary forces driving this turnover, the rapid reorganization of centromeric sequences over short evolutionary timescales highlights their potential as hotspots for evolutionary innovation.more » « less
-
ABSTRACT Most mosquito and midge species use hearing during acoustic mating behaviors. For frog-biting species, however, hearing plays an important role beyond mating as females rely on anuran calls to obtain blood meals. Despite the extensive work examining hearing in mosquito species that use sound in mating contexts, our understanding of how mosquitoes hear frog calls is limited. Here, we directly investigated the mechanisms underlying detection of frog calls by a mosquito species specialized on eavesdropping on anuran mating signals: Uranotaenia lowii. Behavioral, biomechanical and neurophysiological analyses revealed that the antenna of this frog-biting species can detect frog calls by relying on neural and mechanical responses comparable to those of non-frog-biting species. Our findings show that in Ur. lowii, contrary to most species, males do not use sound for mating, but females use hearing to locate their anuran host. We also show that the response of the antennae of this frog-biting species resembles that of the antenna of species that use hearing for mating. Finally, we discuss our data considering how mosquitoes may have evolved the ability to tap into the communication system of frogs.more » « less
-
Corticosteroids are critical for development and for mediating stress responses across diverse vertebrate taxa. Study of frog metamorphosis has made significant breakthroughs in our understanding of corticosteroid signaling during development in non-mammalian vertebrate species. However, lack of adequate corticosterone (CORT) response genes in tadpoles make identification and quantification of CORT responses challenging. Here, we characterized a CORT-response genefrzb(frizzled related protein) previously identified inXenopus tropicalistadpole tail skin by an RNA-seq study. We validated the RNA-seq results that CORT and not thyroid hormone inducesfrzbin the tails using quantitative PCR. Further, maximumfrzbexpression was achieved by 100-250 nM CORT within 12-24 hours.frzbis not significantly induced in the liver and brain in response to 100 nM CORT. We also found no change infrzbexpression across natural metamorphosis when endogenous CORT levels peak. Surprisingly,frzbis only induced by CORT inX. tropicalistails and not inXenopus laevistails. The exact downstream function of increasedfrzbexpression in tails in response to CORT is not known, but the specificity of hormone response and its high mRNA expression levels in the tail renderfrzba useful marker of exogenous CORT-response independent of thyroid hormone for exogenous hormone treatments andin-vivoendocrine disruption studies.more » « less
An official website of the United States government
