skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bioaerosol size as a potential determinant of airborne E. coli viability under ultraviolet germicidal irradiation and ozone disinfection
Abstract Ultraviolet germicidal irradiation (UVGI) and ozone disinfection are crucial methods for mitigating the airborne transmission of pathogenic microorganisms in high-risk settings, particularly with the emergence of respiratory viral pathogens such as SARS-CoV-2 and avian influenza viruses. This study quantitatively investigates the influence of UVGI and ozone on the viability ofE. coliin bioaerosols, with a particular focus on howE. coliviability depends on the size of the bioaerosols, a critical factor that determines deposition patterns within the human respiratory system and the evolution of bioaerosols in indoor environments. This study used a controlled small-scale laboratory chamber whereE. colisuspensions were aerosolized and subjected to varying levels of UVGI and ozone levels throughout the exposure time (2–6 s). The normalized viability ofE. coliwas found to be significantly reduced by UVGI (60–240μW s cm−2) as the exposure time increased from 2 to 6 s, and the most substantial reduction ofE. colinormalized viability was observed when UVGI and ozone (65–131 ppb) were used in combination. We also found that UVGI reduced the normalized viability ofE. coliin bioaerosols more significantly with smaller sizes (0.25–0.5μm) than with larger sizes (0.5–2.5μm). However, when combining UVGI and ozone, the normalized viability was higher for smaller particle sizes than for the larger ones. The findings provide insights into the development of effective UVGI disinfection engineering methods to control the spread of pathogenic microorganisms in high-risk environments. By understanding the influence of the viability of microorganisms in various bioaerosol sizes, we can optimize UVGI and ozone techniques to reduce the potential risk of airborne transmission of pathogens.  more » « less
Award ID(s):
2034198
PAR ID:
10486387
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Nanotechnology
Volume:
35
Issue:
14
ISSN:
0957-4484
Format(s):
Medium: X Size: Article No. 145702
Size(s):
Article No. 145702
Sponsoring Org:
National Science Foundation
More Like this
  1. Zhou, Ning-Yi (Ed.)
    ABSTRACT Aerobiology research focusing on bioaerosol particle dynamics has catalogued the identity, distribution, and abundance of airborne microbes in a broad variety of indoor environments and, more recently, indoor disinfection methods for medically relevant microbes. Given their importance in environmental health and our constant exposure to airborne microbes in our daily lives, surprisingly little is known about the activity of live bioaerosols and their metabolic responses to aerosolization and suspension stress. In this context, microbial messenger RNA (mRNA) is a powerful information source of near-real-time organismal responses that cannot be attained through genomic, proteomic, or metabolomic studies. This review discusses current knowledge from transcriptomic studies describing airborne bacterial cellular activity in response to a myriad of environmental stresses imparted rapidly upon aerosolization and continued suspension as a microscopic bioaerosol. In the context of transcriptome profiling, potential artifacts associated with aerosolization/collection of bioaerosols are discussed from the perspective of preserving mRNA and maintaining its fidelity as it exists in airborne microbes. Recommendations for advancing live bioaerosol metabolic profiling through gene expression studies are presented to mitigate inherent artifacts and challenges with modern bioaerosol experiments. These recommendations include the use of larger experimental chambers, temperature control during aerosolization processes, and liquid capture bioaerosol sampling into a nucleic acid preservative to improve the fidelity of collected RNA and better capture the transcriptional activity of airborne microorganisms. Eventually, improvements in profiling bioaerosol activity can contribute toward answering fundamental questions on the aerobiome such as: is the atmosphere a temporary highway or a habitat for microorganisms? 
    more » « less
  2. After decades of UV disinfection practice and numerous studies on the potential for pathogens to undergo dark or photo-repair after UV exposure, recent advances in UV light emitting diode (LED) technologies prompt renewed attention to bacterial reactivation and regrowth processes after UV exposure. The aspect of photorepair conditions warrants particular attention, because even studies on conventional mercury vapor lamps have not sufficiently characterized these parameters. Wastewater encounters a wide range of environmental conditions upon discharge ( e.g. , solar irradiation and dissolved organics) which may affect repair processes and ultimately lead to overestimations of pathogen removal. Escherichia coli was used here to investigate the impacts of changing reactivation conditions after UV 254 and UV 278 irradiation. UV 254 and UV 278 doses of 13.75 ± 0.4 mJ cm −2 and 28.3 ± 0.8 mJ cm −2 were required to induce a 3.0 log inactivation of E. coli , respectively. Specifically, photoreactivation conditions were varied across dissolved organic matter (DOM) content and photoreactivation wavelengths and intensities. Photoreactivation achieved higher log recoveries than dark repair, ranging from 0.8 to 1.8 log differences, but a secondary disinfection effect occurred under UVA irradiation. During photoreactivation, humic acid inhibited the initial repair of UV 278 -dosed E. coli , but culture media enhanced recovery for both dosage wavelengths. Photoreactivation profiles under UV 395 , UV 365 , and visible light depended on both fluence and time, with more regrowth observed upon exposure to visible light and the least under 365 nm. The susceptibility of E. coli to UVA was increased by prior exposure to UVC. 
    more » « less
  3. Microplastics (MP) have been proposed as a vector for pathogenic microorganisms in the freshwater environment. The objectives of this study were (1) to compare the fecal indicator growth in biofilms on MP and material control microparticles incubated in different wastewater fractions and (2) to compare MP biofilm, natural microparticle biofilm, and planktonic cell susceptibility to disinfection by peracetic acid (PAA). Biofilms were grown on high‐density polyethylene, low‐density polyethylene, polypropylene MP or wood chips (as a material control) and incubated in either wastewater influent or pre‐disinfection secondary effluent. Reactors were disinfected with PAA, biofilms were dislodged, and fecal coliform and E. coli were cultivated. Fecal indicators were quantifiable in both MP and wood biofilms incubated in the wastewater influent but only on the wood biofilms incubated in secondary wastewater effluent. More fecal coliform grew in the wood biofilms than MP biofilms, and the biofilms grown on MP and woodchips were more resistant to disinfection than planktonic bacteria. Thus, it may be possible to refer to the disinfection literature for fecal indicators in biofilm on other particles to predict behavior on MP. Treatments that remove particles in general would help reduce the potential for fecal indicator bypass of disinfection. 
    more » « less
  4. Abstract The fast spread of coronavirus disease 2019 (COVID‐19) constitutes a worldwide challenge to the public health, educational and trade systems, affecting the overall well‐being of human societies. The high transmission and mortality rates of this virus, and the unavailability of a vaccine or treatment, resulted in the decision of multiple governments to enact measures of social distancing. Such measures can reduce the exposure to bioaerosols, which can result in pathogen deposition in the respiratory tract of the host causing disease and an immunological response. Thus, it is important to consider the validity of the proposal for keeping a distance of at least 2 m from other persons to avoid the spread of COVID‐19. This work reviews the effect of aerodynamic diameter (size) of particles carrying RNA copies of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). A SARS‐CoV‐2 carrier person talking, sneezing or coughing at distance of 2 m can still provide a pathogenic bioaerosol load with submicron particles that remain viable in air for up to 3 h for exposure of healthy persons near and far from the source in a stagnant environment. The deposited bioaerosol creates contaminated surfaces, which if touched can act as a path to introduce the pathogen by mouth, nose or eyes and cause disease. 
    more » « less
  5. Dudley, Edward G. (Ed.)
    ABSTRACT Effective disinfection technology to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can help reduce viral transmission during the ongoing COVID-19 global pandemic and in the future. UV devices emitting UVC irradiation (200 to 280 nm) have proven to be effective for virus disinfection, but limited information is available for SARS-CoV-2 due to the safety requirements of testing, which is limited to biosafety level 3 (BSL3) laboratories. In this study, inactivation of SARS-CoV-2 in thin-film buffered aqueous solution (pH 7.4) was determined across UVC irradiation wavelengths of 222 to 282 nm from krypton chloride (KrCl*) excimers, a low-pressure mercury-vapor lamp, and two UVC light-emitting diodes. Our results show that all tested UVC devices can effectively inactivate SARS-CoV-2, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate). The inactivation rate constants of SARS-CoV-2 across wavelengths are similar to those for murine hepatitis virus (MHV) from our previous investigation, suggesting that MHV can serve as a reliable surrogate of SARS-CoV-2 with a lower BSL requirement (BSL2) during UV disinfection tests. This study provides fundamental information on UVC’s action on SARS-CoV-2 and guidance for achieving reliable disinfection performance with UVC devices. IMPORTANCE UV light is an effective tool to help stem the spread of respiratory viruses and protect public health in commercial, public, transportation, and health care settings. For effective use of UV, there is a need to determine the efficiency of different UV wavelengths in killing pathogens, specifically SARS-CoV-2, to support efforts to control the ongoing COVID-19 global pandemic and future coronavirus-caused respiratory virus pandemics. We found that SARS-CoV-2 can be inactivated effectively using a broad range of UVC wavelengths, and 222 nm provided the best disinfection performance. Interestingly, 222-nm irradiation has been found to be safe for human exposure up to thresholds that are beyond those effective for inactivating viruses. Therefore, applying UV light from KrCl* excimers in public spaces can effectively help reduce viral aerosol or surface-based transmissions. 
    more » « less