It is believed that Euclidean Yang–Mills theories behave like the massless Gaussian free field (GFF) at short distances. This makes it impossible to define the main observables for these theories—the Wilson loop observables—in dimensions greater than two, because line integrals of the GFF do not exist in such dimensions. Taking forward a proposal of Charalambous and Gross, this article shows that it is possible to define Euclidean Yang–Mills theories on the 3D unit torus as ‘random distributional gauge orbits’, provided that they indeed behave like the GFF in a certain sense. One of the main technical tools is the existence of the Yang–Mills heat flow on the 3D torus starting from GFF-like initial data, which is established in a companion paper. A key consequence of this construction is that under the GFF assumption, one can define a notion of ‘regularized Wilson loop observables’ for Euclidean Yang–Mills theories on the 3D unit torus.
more » « less- Award ID(s):
- 2153654
- PAR ID:
- 10486397
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Communications in Mathematical Physics
- Volume:
- 405
- Issue:
- 1
- ISSN:
- 0010-3616
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We define a natural state space and Markov process associated to the stochastic Yang–Mills heat flow in two dimensions. To accomplish this we first introduce a space of distributional connections for which holonomies along sufficiently regular curves (Wilson loop observables) and the action of an associated group of gauge transformations are both well-defined and satisfy good continuity properties. The desired state space is obtained as the corresponding space of orbits under this group action and is shown to be a Polish space when equipped with a natural Hausdorff metric. To construct the Markov process we show that the stochastic Yang–Mills heat flow takes values in our space of connections and use the “DeTurck trick” of introducing a time dependent gauge transformation to show invariance, in law, of the solution under gauge transformations. Our main tool for solving for the Yang–Mills heat flow is the theory of regularity structures and along the way we also develop a “basis-free” framework for applying the theory of regularity structures in the context of vector-valued noise – this provides a conceptual framework for interpreting several previous constructions and we expect this framework to be of independent interest.more » « less
-
A bstract We study a sector of the 5d maximally supersymmetric Yang-Mills theory on S 5 consisting of 1 / 8-BPS Wilson loop operators contained within a great S 3 inside S 5 . We conjecture that these observables are described by a 3d Chern Simons theory on S 3 , analytically continued to a pure imaginary Chern-Simons level. Therefore, the expectation values of these 5d Wilson loops compute knot invariants. We verify this conjecture in the weakly-coupled regime from explicit Feynman diagram computations. At strong coupling, these Wilson loop operators lift to 1 / 8-BPS surface operators in the 6d (2 , 0) theory on S 1 × S 5 . Using AdS/CFT, we show that these surface operators are dual to M2-branes subject to certain calibration conditions required in order to preserve supersymmetry. We compute the renormalized action of a large class of calibrated M2-branes and obtain a perfect match with the field theory prediction. Finally, we present a derivation of the 3d Chern-Simons theory from 5d super-Yang-Mills theory using supersymmetric localization, modulo a subtle issue that we discuss.more » « less
-
We propose a description of the gluon scattering amplitudes as the inverse Mellin transforms of the conformal correlators of light operators in two-dimensional Liouville theory tensored with WZW-like chiral currents on the celestial sphere. The dimensions of operators are Mellin dual to gluon light cone energies while their positions are determined by the gluon momentum directions. Tree-level approximation in Yang-Mills theory corresponds to the semiclassical limit of Liouville theory. By comparing subleading corrections, we find b^2=(8π^2)^{−1}b_0g^2(M), where b is the Liouville coupling constant, g(M) is the Yang Mills coupling at the renormalization scale M and b_0 is the one-loop coefficient of the Yang-Mills beta function.more » « less
-
Circular Wilson loop in $$ \mathcal{N} $$ = 2* super Yang-Mills theory at two loops and localizationnull (Ed.)A bstract We present a two-loop calculation of the supersymmetric circular Wilson loop in the $$ \mathcal{N} $$ N = 2 * super Yang-Mills theory on the four-sphere. We develop an efficient framework for computing contributing Feynman graphs that relies on using the embedding coordinates combined with the Mellin-Barnes techniques for propagator-like integrals on the sphere. Our results exactly match predictions of supersymmetric localization providing a nontrivial consistency check for the latter in non-conformal settings.more » « less
-
A bstract It is well-known that on-shell maximally helicity-violating gluon scattering amplitudes in planar maximally supersymmetric Yang-Mills theory are dual to a bosonic Wilson loop on a null-polygonal contour. The light-like nature of the intervals is a reflection of the mass-shell condition for massless gluons involved in scattering. Presently, we introduce a Wilson loop prototype on a piece-wise curvilinear contour that can be interpreted in the T-dual language to correspond to nonvanishing gluon off-shellness. We analyze it first for four sites at one loop and demonstrate that it coincides with the four-gluon amplitude on the Coulomb branch. Encouraged by this fact, we move on to the two-loop order. To simplify our considerations, we only focus on the Sudakov asymptotics of the Wilson loop, when the off-shellness goes to zero. The latter serves as a regulator of short-distance divergences around the perimeter of the loop, i.e., divergences when gluons are integrated over a small vicinity of the Wilson loop cusps. It does not however regulate conventional ultraviolet divergences of interior closed loops. This unavoidably introduces a renormalization scale dependence and thus scheme dependence into the problem. With a choice of the scale setting and a finite renormalization, we observe exponentiation of the double logarithmic scaling of the Wilson loop with the accompanying exponent being given by the so-called hexagon anomalous dimension, which recently made its debut in the origin limit of six-leg gluon amplitudes. This is contrary to the expectation for the octagon anomalous dimension to rather emerge from our analysis suggesting that the current object encodes physics different from the Coulomb branch scattering amplitudes.more » « less