We report on the isotopic, chemical, and structural properties of four O‐rich presolar grains identified in situ in the Adelaide ungrouped C2, LaPaZ Icefield (
This study describes the application of new synchrotron X‐ray fluorescence (XRF) and diffraction (XRD) microtomographies for the 3‐D visualization of chemical and mineralogical variations in unsectioned extraterrestrial samples. These improved methods have been applied to three compositionally diverse chondritic meteorite samples that were between 300 and 400 μm in diameter, including samples prepared from fragments of the CR2 chondrite LaPaz Icefield (LAP) 02342, H5 chondrite MacAlpine Hills (MAC) 88203, and the CM2 chondrite Murchison. The synchrotron‐based XRF and XRD tomographies used are focused‐beam techniques that measure the intensities of fluorescent and diffracted X‐rays in a sample simultaneously during irradiation by a high‐energy microfocused incident X‐ray beam. Measured sinograms of the emitted and diffracted intensities were then tomographically reconstructed to generate 2‐D slices of XRF and XRD intensity through the sample, with reconstructed pixel resolution of 1–2 μm, defined by the resolution of the focused incident X‐ray beam. For sample LAP 02342, primary mineral phases that were visualized in reconstructed slices using these techniques included isolated grains of α‐Fe, orthopyroxene, and olivine. For our sample of MAC 88203, XRF/XRD tomography allowed visualization of forsteritic olivine as a primary mineral phase, a vitrified fusion crust at the sample surface, identification of localized Cr‐rich spinels at spatial resolutions of several micrometers, and imaging of a plagioclase‐rich glassy matrix. In the sample of Murchison, major identifiable phases include clinoenstatite‐ and olivine‐rich chondrules, variable serpentine matrix minerals and small Cr‐rich spinels. Most notable in the tomographic analysis of Murchison is the ability to quantitatively distinguish and visualize the complex mixture of serpentine‐group minerals and associated tochilinite–cronstedtite intergrowths. These methods provide new opportunities for spatially resolved characterization of sample texture, mineralogy, crystal structure, and chemical state in unsectioned samples. This provides researchers an ability to characterize such samples internally with minimal disruption of sample micro‐structures and chemistry, possibly without the need for sample extraction from some types of sampling and capture media.
more » « less- PAR ID:
- 10486412
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Meteoritics & Planetary Science
- Volume:
- 59
- Issue:
- 2
- ISSN:
- 1086-9379
- Format(s):
- Medium: X Size: p. 395-418
- Size(s):
- p. 395-418
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract LAP ) 031117CO 3.0, and Dominion Range (DOM ) 08006CO 3.0 chondrites. All four grains have oxygen‐isotopic compositions consistent with origins in the circumstellar envelopes (CSE ) of low‐mass O‐rich stars evolved along the red‐giant and asymptotic‐giant branch (RGB ,AGB , respectively) of stellar evolution. Transmission electron microscope (TEM ) analyses, enabled by focused‐ion‐beam scanning electron microscope extraction, show that the grain from Adelaide is a single‐crystal Mg‐Al spinel, and comparison with equilibrium thermodynamic predictions constrains its condensation to 1500 K assuming a total pressure ≤10−3 atm in its hostCSE . In comparison,TEM analysis of two grains identified in theLAP 031117 chondrite exhibits different microstructures. GrainLAP ‐81 is composed of olivine containing a Ca‐rich and a Ca‐poor domain, both of which show distinct orientations, suggesting changing thermodynamic conditions in the hostCSE that cannot be precisely constrained.LAP ‐104 contains a polycrystalline assemblage of ferromagnesian silicates similar to previous reports of nanocrystalline presolar Fe‐rich silicates that formed under nonequilibrium conditions. Lastly,TEM shows that the grain extracted fromDOM 08006 is a polycrystalline assemblage of Cr‐bearing spinel. The grains occur in different orientations, likely reflecting mechanical assembly in their hostCSE . The O‐isotopic and Cr‐rich compositions appear to point toward nonequilibrium condensation. The spinel is surrounded by an isotopically solar pyroxene lacking long‐range atomic order and could have served as a nucleation site for its condensation in the interstellar medium or the inner solar protoplanetary disk. -
Abstract We investigated the state of the arc background mantle (i.e. mantle wedge without slab component) by means of olivine CaO and its Cr-spinel inclusions in a series of high-Mg# volcanic rocks from the Quaternary Trans-Mexican Volcanic Belt. Olivine CaO was paired with the Cr# [molar Cr/(Cr + Al) *100] of Cr-spinel inclusions, and 337 olivine+Cr-spinel pairs were obtained from 33 calc-alkaline, high-K and OIB-type arc front volcanic rocks, and three monogenetic rear-arc basalts that lack subduction signatures. Olivine+Cr-spinels display coherent elemental and He–O isotopic systematics that contrast with the compositional diversity of the bulk rocks. All arc front olivines have low CaO (0.135 ± 0.029 wt %) relative to rear-arc olivines which have the higher CaO (0.248 ± 0.028 wt %) of olivines from mid-ocean ridge basalts. Olivine 3He/4He–δ18O isotope systematics confirm that the olivine+Cr-spinels are not, or negligibly, affected by crustal basement contamination, and thus preserve compositional characteristics of primary arc magmas. Variations in melt H2O contents in the arc front series and the decoupling of olivine CaO and Ni are inconsistent with controls on the olivine CaO by melt water and/or secondary mantle pyroxenites. Instead, we propose that low olivine CaO reflects the typical low melt CaO of high-Mg# arc magmas erupting through thick crust. We interpret the inverse correlation of olivine CaO and Cr-spinel Cr# over a broad range of Cr# (~10–70) as co-variations of CaO, Al and Cr of their (near) primary host melts, which derived from a mantle that has been variably depleted by slab-flux driven serial melt extraction. Our results obviate the need for advecting depleted residual mantle from rear- and back-arc region, but do not upset the larger underlying global variations of melt CaO high-Mg# arc magmas worldwide, despite leading to considerable regional variations of melt CaO at the arc front of the Trans-Mexican Volcanic Belt.
-
Abstract Understanding the optoelectronic properties of optically active materials at the nanoscale often proves challenging due to the diffraction-limited resolution of visible light probes and the dose sensitivity of many optically active materials to high-energy electron probes. In this study, we demonstrate correlative synchrotron-based scanning x-ray excited optical luminescence (XEOL) and x-ray fluorescence (XRF) to simultaneously probe local composition and optoelectronic properties of halide perovskite thin films of interest for photovoltaic and optoelectronic devices. We find that perovskite XEOL stability, emission redshifting, and peak broadening under hard x-ray irradiation correlates with trends seen in photoluminescence measurements under continuous visible light laser irradiation. The XEOL stability is sufficient under the intense x-ray probe irradiation to permit proof-of-concept correlative mapping. Typical synchrotron XRF and nano-diffraction measurements use acquisition times 10–100 x shorter than the 5-second acquisition employed for XEOL scans in this study, suggesting that improving luminescence detection should allow correlative XEOL measurements to be performed successfully with minimal material degradation. Analysis of the XEOL emission from the quartz substrate beneath the perovskite reveals its promise for use as a real-time in-situ x-ray dosimeter, which could provide quantitative metrics for future optimization of XEOL data collection for perovskites and other beam-sensitive materials. Overall, the data suggest that XEOL represents a promising route towards improved resolution in the characterization of nanoscale heterogeneities and defects in optically active materials that may be implemented into x-ray nanoprobes to complement existing x-ray modalities.more » « less
-
Abstract The radiation record of extraterrestrial rocks provides important insights into their thermal and radiation history. For meteorites this relates to their orbits, thermal history, terrestrial age, preatmospheric size and shape, and possibly cosmic ray exposure age. For meteorites from the Moon and Mars, the radiation record allows insights into transit times. For Martian surface samples, the radiation record enables estimates of their sedimentary age. Despite this, there is a growing tendency to artificially expose these samples to large radiation doses by the use of X‐ray computed tomography (
CT ) imaging, often as part of their initial examination. In order to understand the effect of synchrotron microCT on meteorites, we placed samples of the Bruderheim L6 chondrite in theCT imaging port of the Advanced Photon Source at the Argonne National Laboratory, Argonne, Illinois. Monoenergetic X‐ray beams of 25 and 46 keV and a high flux broad spectrum beam were used. The synchrotronCT procedure exposed the samples to radiation doses significantly higher than the natural doses observed for meteorites (1670 to ~10,000 Gyr, compared to ~1000 Gyr for natural samples). It is clear thatCT imaging, whether using a laboratory system as in our previous report or using the synchrotron source, makes measurement of the natural radiation record of the samples impossible. Samples should not be placed in aCT scanner without due consideration of the loss of unique information for these valuable extraterrestrial samples. -
Abstract To assess the variability of redox states among mare basalt source regions, investigation of the valence of Ti, Cr, and V and the coordination environment of Ti in pyroxene and olivine in lunar rocks via
XANES (X‐ray absorption near‐edge structure) spectroscopy has been extended to Apollo 17 basalts: two high‐Ti (70017 and 74275) hand samples, and three very low‐Ti (70006,371, 70007,289B, and 70007,296) basalt fragments from the Apollo 17 deep drill core. Valences of Ti in pyroxene of both suites range from 3.6 to 4, or from 40% to 0% Ti3+, averaging 15–20% Ti3+. Assuming Ti3+is more compatible in pyroxene than Ti4+, then even lower Ti3+proportions are indicated for the parental melts. TheVLT pyroxene exhibits a slightly wider range of V valences (2.57–2.96) than the high‐Ti pyroxene (2.65–2.86) and a much wider range of Cr valences (2.32–2.80 versus 2.68–2.86); Cr is generally reduced inVLT pyroxene compared to high‐Ti pyroxene. Valences of Ti and Cr inVLT pyroxene become less reduced with increasing FeO contents, possibly indicating change in oxygen fugacity during crystallization. Olivine in all samples has very low (<20%) proportions of Ti3+, with no Ti3+and higher proportions of Ti in tetrahedral coordination in theVLT s than in the high‐Ti basalts. Olivine in 74275, including that in a dunite clast, has much higher proportions of Cr2+than the pyroxene in that sample, consistent with previous studies indicating that the olivine grains in this sample are xenocrysts and possibly indicating oxidation just prior to pyroxene crystallization. Results for this sample, theVLT s, and previously studied Apollo 14 and 15 basalts all indicate that mare magmas were in reducing environments at depth, as recorded in early crystallization products, and that later, presumably shallower environments, were relatively oxidizing; single, characteristic 2s of formation cannot be assigned to these samples. A process likely to account for this feature seen in multiple samples is loss by degassing of a reducing, H‐rich vapor (probably H2) during ascent and/or eruption, causing oxidation of the residual melt, recorded in relatively late‐crystallized pyroxene.f O