skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Warped Compactifications in Particle Physics, Cosmology and Quantum Gravity
Particle physics has evolved in the past decade through evaluating the consequences of experimental measurements as well as exploiting theoretical tools that permit exploration of new model building and cosmological possibilities. Particularly due to insights from the AdS/CFT correspondence, higher-dimensional warped compactifications, in particular, have played a big role in recent developments by allowing a study of regimes of parameters that would otherwise be intractable. Similarly, theoretical developments in quantum gravity benefit from the bigger range of possibilities that can be explored using warped geometry, allowing for constructions of string vacua with positive cosmological constant and for the exploration of entanglement and information transfer in arbitrary dimensions. Puzzles remain in both more phenomenologically oriented and more theoretically oriented contexts which form the basis for a rich research program in the future as well.  more » « less
Award ID(s):
1915071
PAR ID:
10486492
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Snowmass
Date Published:
Journal Name:
Snowmass 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract We study the cosmological transition of 5D warped compactifications, from the high-temperature black-brane phase to the low-temperature Randall-Sundrum I phase. The transition proceeds via percolation of bubbles of IR-brane nucleating from the black-brane horizon. The violent bubble dynamics can be a powerful source of observable stochastic gravitational waves. While bubble nucleation is non-perturbative in 5D gravity, it is amenable to semiclassical treatment in terms of a “bounce” configuration interpolating between the two phases. We demonstrate how such a bounce configuration can be smooth enough to maintain 5D effective field theory control, and how a simple ansatz for it places a rigorous lower-bound on the transition rate in the thin-wall regime, and gives plausible estimates more generally. When applied to the Hierarchy Problem, the minimal Goldberger-Wise stabilization of the warped throat leads to a slow transition with significant supercooling. We demonstrate that a simple generalization of the Goldberger-Wise potential modifies the IR-brane dynamics so that the transition completes more promptly. Supercooling determines the dilution of any (dark) matter abundances generated before the transition, potentially at odds with data, while the prompter transition resolves such tensions. We discuss the impact of the different possibilities on the strength of the gravitational wave signals. Via AdS/CFT duality the warped transition gives a theoretically tractable holographic description of the 4D Composite Higgs (de)confinement transition. Our generalization of the Goldberger-Wise mechanism is dual to, and concretely models, our earlier proposal in which the composite dynamics is governed by separate UV and IR RG fixed points. The smooth 5D bounce configuration we introduce complements the 4D dilaton/radion dominance derivation presented in our earlier work. 
    more » « less
  2. Abstract Prototyping use cases for augmented reality (AR) applications can be beneficial to elicit the functional requirements of the features early-on, to drive the subsequent development in a goal-oriented manner. Doing so would require designers to identify the goal-oriented interactions and map the associations between those interactions in a spatio-temporal context. Pertaining to the multiple scenarios that may result from the mapping, and the embodied nature of the interaction components, recent AR prototyping methods lack the support to adequately capture and communicate the intent of designers and stakeholders during this process. We present ImpersonatAR, a mobile-device-based prototyping tool that utilizes embodied demonstrations in the augmented environment to support prototyping and evaluation of multi-scenario AR use cases. The approach uses: (1) capturing events or steps in the form of embodied demonstrations using avatars and 3D animations, (2) organizing events and steps to compose multi-scenario experience, and finally (3) allowing stakeholders to explore the scenarios through interactive role-play with the prototypes. We conducted a user study with ten participants to prototype use cases using ImpersonatAR from two different AR application features. Results validated that ImpersonatAR promotes exploration and evaluation of diverse design possibilities of multi-scenario AR use cases through embodied representations of the different scenarios. 
    more » « less
  3. The precision cosmological model describing the origin and expansion history of the universe, with observed structure seeded at the inflationary cosmic horizon, demands completion in the ultraviolet and in the infrared. The dynamics of the cosmic horizon also suggests an associated entropy, again requiring a microphysical theory. Recent years have seen enormous progress in understanding the structure of de Sitter space and inflation in string theory, and of cosmological observables captured by quantum field theory and solvable deformations thereof. The resulting models admit ongoing observational tests through measurements of the cosmic microwave background and large-scale structure, as well as through analyses of theoretical consistency by means of thought experiments. This paper, prepared for the TF01 and TF09 conveners of the Snowmass 2021 process, provides a synopsis of this important area, focusing on ongoing developments and opportunities. Note: Contribution to Snowmass 2021 
    more » « less
  4. Training robotic policies in simulation suffers from the sim-to-real gap, as simulated dynamics can be different from real-world dynamics. Past works tackled this problem through domain randomization and online system-identification. The former is sensitive to the manually-specified training distribution of dynamics parameters and can result in behaviors that are overly conservative. The latter requires learning policies that concurrently perform the task and generate useful trajectories for system identification. In this work, we propose and analyze a framework for learning exploration policies that explicitly perform task-oriented exploration actions to identify task-relevant system parameters. These parameters are then used by model-based trajectory optimization algorithms to perform the task in the real world. We instantiate the framework in simulation with the Linear Quadratic Regulator as well as in the real world with pouring and object dragging tasks. Experiments show that task-oriented exploration helps model-based policies adapt to systems with initially unknown parameters, and it leads to better task performance than task-agnostic exploration. 
    more » « less
  5. null (Ed.)
    We propose a method by which one could use modified antimatter gravity experiments in order to perform a high-precision test of antimatter charge neutrality. The proposal is based on the application of a strong, external, vertically oriented electric field during an antimatter free-fall gravity experiment in the gravitational field of the Earth. The proposed experimental setup has the potential to drastically improve the limits on the charge-asymmetry parameter ϵ¯q of antimatter. On the theoretical side, we analyze possibilities to describe a putative charge-asymmetry of matter and antimatter, proportional to the parameters ϵq and ϵ¯q, by Lagrangian methods. We found that such an asymmetry could be described by four-dimensional Lorentz-invariant operators that break CPT without destroying the locality of the field theory. The mechanism involves an interaction Lagrangian with field operators decomposed into particle or antiparticle field contributions. Our Lagrangian is otherwise Lorentz, as well as PT invariant. Constraints to be derived on the parameter ϵ¯q do not depend on the assumed theoretical model. 
    more » « less