skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Post‐transcriptional control of the essential enzyme MurF by a small regulatory RNA in Brucella abortus
Abstract Brucella abortusis a facultative, intracellular, zoonotic pathogen that resides inside macrophages during infection. This is a specialized niche whereB. abortusencounters various stresses as it navigates through the macrophage. In order to survive this harsh environment,B. abortusutilizes post‐transcriptional regulation of gene expression through the use of small regulatory RNAs (sRNAs). Here, we characterize aBrucellasRNAs called MavR (forMurF‐andvirulence‐regulating sRNA), and we demonstrate that MavR is required for the full virulence ofB. abortusin macrophages and in a mouse model of chronic infection. Transcriptomic and proteomic studies revealed that a major regulatory target of MavR is MurF. MurF is an essential protein that catalyzes the final cytoplasmic step in peptidoglycan (PG) synthesis; however, we did not detect any differences in the amount or chemical composition of PG in the ΔmavRmutant. A 6‐nucleotide regulatory seed region within MavR was identified, and mutation of this seed region resulted in dysregulation of MurF production, as well as significant attenuation of infection in a mouse model. Overall, the present study underscores the importance of sRNA regulation in the physiology and virulence ofBrucella.  more » « less
Award ID(s):
1933525
PAR ID:
10486584
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Microbiology
Volume:
121
Issue:
1
ISSN:
0950-382X
Format(s):
Medium: X Size: p. 129-141
Size(s):
p. 129-141
Sponsoring Org:
National Science Foundation
More Like this
  1. Parsek, Matthew (Ed.)
    ABSTRACT Histone-like nucleoid structuring (H-NS) and H-NS-like proteins serve as global gene silencers and work with antagonistic transcriptional activators (counter-silencers) to properly coordinate the expression of virulence genes in pathogenic bacteria. InBrucella, MucR has been proposed as a novel H-NS-like gene silencer, but direct experimental evidence is lacking. Here, we show that MucR serves as an H-NS-like silencer of theBrucella abortusgenes encoding the polar autotransporter adhesins BtaE and BmaC, the c-di-GMP-specific phosphodiesterase BpdB, and the quorum-sensing regulator BabR. We also demonstrate that the MarR-type transcriptional activator MdrA can displace MucR from thebtaEpromoter, supporting the existence of MucR counter-silencers inBrucella. Moreover, our chromatin immunoprecipitation (ChIP)-seq analysis identified 546 MucR enrichment peaks along the genome, including in the promoters of the genes encoding the Type IV secretion machinery and effectors and the quorum-sensing regulator VjbR. Importantly, MucR ChIP-seq peaks overlap with the previously described binding sites for the transcriptional activators VjbR, BvrR, and CtrA suggesting that these regulators serve as MucR counter-silencers and work in concert with MucR to coordinate virulence gene expression inBrucella. In addition, using chromosome conformation capture (Hi-C), we show that like H-NS inEscherichia coli, MucR alters the global structure of theBrucellanucleoid. Finally, a copy of theE. coli hnsrescues the distinctive growth defect and elevatedbtaEexpression of aB. abortus mucRmutant. Together, these findings solidify the role of MucR as a novel type of H-NS-like protein and suggest that MucR’s gene-silencing properties play a key role in virulence inBrucella. IMPORTANCEHistone-like nucleoid structuring (H-NS) and H-NS-like proteins coordinate host-associated behaviors in many pathogenic bacteria, often through forming silencer/counter-silencer pairs with signal-responsive transcriptional activators to tightly control gene expression.Brucellaand related bacteria do not encode H-NS or homologs of known H-NS-like proteins, and it is unclear if they have other proteins that perform analogous functions during pathogenesis. In this work, we provide compelling evidence for the role of MucR as a novel H-NS-like protein inBrucella. We show that MucR possesses many of the known functions attributed to H-NS and H-NS-like proteins, including the formation of silencer/counter-silencer pairs to control virulence gene expression and global structuring of the nucleoid. These results uncover a new role for MucR as a nucleoid structuring protein and support the importance of temporal control of gene expression inBrucellaand related bacteria. 
    more » « less
  2. Ellermeier, Craig D (Ed.)
    ABSTRACT Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized; however, little is known about the impacts of oxidative stress at the translation level. Using the model archaeonHaloferax volcanii, we performed RNA-seq and ribosome profiling (Ribo-seq) to characterize the global translation landscape during oxidative stress. We identified 281 genes with differential translation efficiency (TE). Downregulated genes were enriched in ribosomal and translation proteins, in addition to peroxidases and genes involved in the TCA cycle. We also identified 42 small noncoding RNAs (sRNAs) with ribosome occupancy. Size distributions of ribosome footprints revealed distinct patterns for coding and noncoding genes, with 12 sRNAs matching the pattern of coding genes, and mass spectrometry confirming the presence of seven small proteins encoded by these sRNAs. However, the majority of sRNAs with ribosome occupancy had no evidence of coding potential. Of these ribosome-associated sRNAs, 12 had differential ribosome occupancy or TE during oxidative stress, suggesting that they may play a regulatory role during the oxidative stress response. Our findings on ribosomal regulation during oxidative stress, coupled with potential roles for ribosome-associated noncoding sRNAs and sRNA-derived small proteins inH. volcanii, revealed additional regulatory layers and underscored the multifaceted architecture of stress-responsive regulatory networks.IMPORTANCEArchaea are found in diverse environments, including as members of the human microbiome, and are known to play essential ecological roles in major geochemical cycles. The study of archaeal biology has expanded our understanding of the evolution of eukaryotes, uncovered novel biological systems, and revealed new opportunities for applications in biotechnology and bioremediation. Many archaeal systems, however, remain poorly characterized. UsingHaloferax volcaniias a model, we investigated the global translation landscape during oxidative stress. Our findings expand current knowledge of translational regulation in archaea and further illustrate the complexity of stress-responsive gene regulation. 
    more » « less
  3. Abstract Small RNAs (sRNAs) of the fungal pathogenBotrytis cinereacan enter plant cells and hijack host Argonaute protein 1 (AGO1) to silence host immunity genes. However, the mechanism by which these fungal sRNAs are secreted and enter host cells remains unclear. Here, we demonstrate thatB. cinereautilizes extracellular vesicles (EVs) to secrete Bc-sRNAs, which are then internalized by plant cells through clathrin-mediated endocytosis (CME). TheB. cinereatetraspanin protein, Punchless 1 (BcPLS1), serves as an EV biomarker and plays an essential role in fungal pathogenicity. We observe numerousArabidopsisclathrin-coated vesicles (CCVs) aroundB. cinereainfection sites and the colocalization ofB. cinereaEV marker BcPLS1 andArabidopsis CLATHRIN LIGHT CHAIN 1, one of the core components of CCV. Meanwhile, BcPLS1 and theB. cinerea-secreted sRNAs are detected in purified CCVs after infection.Arabidopsisknockout mutants and inducible dominant-negative mutants of key components of the CME pathway exhibit increased resistance toB. cinereainfection. Furthermore, Bc-sRNA loading intoArabidopsisAGO1 and host target gene suppression are attenuated in those CME mutants. Together, our results demonstrate that fungi secrete sRNAs via EVs, which then enter host plant cells mainly through CME. 
    more » « less
  4. Abstract Bacteria use a multi-layered regulatory strategy to precisely and rapidly tune gene expression in response to environmental cues. Small RNAs (sRNAs) form an important layer of gene expression control and most act post-transcriptionally to control translation and stability of mRNAs. We have shown that at least five different sRNAs inEscherichia coliregulate the cyclopropane fatty acid synthase (cfa) mRNA. These sRNAs bind at different sites in the long 5’ untranslated region (UTR) ofcfamRNA and previous work suggested that they modulate RNase E-dependent mRNA turnover. Recently, thecfa5’ UTR was identified as a site of Rho-dependent transcription termination, leading us to hypothesize that the sRNAs might also regulatecfatranscription elongation. In this study we find that a pyrimidine-rich region flanked by sRNA binding sites in thecfa5’ UTR is required for premature Rho-dependent termination. We discovered that both the activating sRNA RydC and repressing sRNA CpxQ regulatecfaprimarily by modulating Rho-dependent termination ofcfatranscription, with only a minor effect on RNase E-mediated turnover ofcfamRNA. A stem-loop structure in thecfa5’ UTR sequesters the pyrimidine-rich region required for Rho-dependent termination. CpxQ binding to the 5’ portion of the stem increases Rho-dependent termination whereas RydC binding downstream of the stem decreases termination. These results reveal the versatile mechanisms sRNAs use to regulate target gene expression at transcriptional and post-transcriptional levels and demonstrate that regulation by sRNAs in long UTRs can involve modulation of transcription elongation. ImportanceBacteria respond to stress by rapidly regulating gene expression. Regulation can occur through control of messenger RNA (mRNA) production (transcription elongation), stability of mRNAs, or translation of mRNAs. Bacteria can use small RNAs (sRNAs) to regulate gene expression at each of these steps, but we often do not understand how this works at a molecular level. In this study, we find that sRNAs inEscherichia coliregulate gene expression at the level of transcription elongation by promoting or inhibiting transcription termination by a protein called Rho. These results help us understand new molecular mechanisms of gene expression regulation in bacteria. 
    more » « less
  5. ABSTRACT Acetylation is a broadly conserved mechanism of covalently modifying the proteome to precisely control protein activity. In bacteria, central metabolic enzymes and regulatory proteins, including those involved in virulence, can be targeted for acetylation. In this study, we directly link a putative acetylation system to metabolite-dependent virulence in the pathogen Vibrio cholerae . We demonstrate that the cobB and yfiQ genes, which encode homologs of a deacetylase and an acetyltransferase, respectively, modulate V. cholerae metabolism of acetate, a bacterially derived short-chain fatty acid with important physiological roles in a diversity of host organisms. In Drosophila melanogaster , a model arthropod host for V. cholerae infection, the pathogen consumes acetate within the gastrointestinal tract, which contributes to fly mortality. We show that deletion of cobB impairs growth on acetate minimal medium, delays the consumption of acetate from rich medium, and reduces virulence of V. cholerae toward Drosophila . These impacts can be reversed by complementing cobB or by introducing a deletion of yfiQ into the Δ cobB background. We further show that cobB controls the accumulation of triglycerides in the Drosophila midgut, which suggests that cobB directly modulates metabolite levels in vivo . In Escherichia coli K-12, yfiQ is upregulated by cAMP-cAMP receptor protein (CRP), and we identified a similar pattern of regulation in V. cholerae , arguing that the system is activated in response to similar environmental cues. In summary, we demonstrate that proteins likely involved in acetylation can modulate the outcome of infection by regulating metabolite exchange between pathogens and their colonized hosts. IMPORTANCE The bacterium Vibrio cholerae causes severe disease in humans, and strains can persist in the environment in association with a wide diversity of host species. By investigating the molecular mechanisms that underlie these interactions, we can better understand constraints affecting the ecology and evolution of this global pathogen. The Drosophila model of Vibrio cholerae infection has revealed that bacterial regulation of acetate and other small metabolites from within the fly gastrointestinal tract is crucial for its virulence. Here, we demonstrate that genes that may modify the proteome of V. cholerae affect virulence toward Drosophila , most likely by modulating central metabolic pathways that control the consumption of acetate as well as other small molecules. These findings further highlight the many layers of regulation that tune bacterial metabolism to alter the trajectory of interactions between bacteria and their hosts. 
    more » « less