skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Bandit Online Linear Optimization with Hints and Queries
We study variants of the online linear optimization (OLO) problem with bandit feedback, where the algorithm has access to external information about the unknown cost vector. Our motivation is the recent body of work on using such “hints” towards improving regret bounds for OLO problems in the full-information setting. Unlike in the full-information OLO setting, with bandit feedback, we first show that one cannot improve the standard regret bounds of O(\sqrt{T}) by using hints, even if they are always well-correlated with the cost vector. In contrast, if the algorithm is empowered to issue queries and if all the responses are correct, then we show O(\log(T)) regret is achievable. We then show how to make this result more robust — when some of the query responses can be adversarial — by using a little feedback on the quality of the responses.  more » « less
Award ID(s):
2211718
PAR ID:
10486613
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ICML
Date Published:
Journal Name:
Proceedings of Machine Learning Research
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the online linear optimization problem, where at every step the algorithm plays a point x_t in the unit ball, and suffers loss for some cost vector c_t that is then revealed to the algorithm. Recent work showed that if an algorithm receives a "hint" h_t that has non-trivial correlation with c_t before it plays x_t, then it can achieve a logarithmic regret guarantee, improving on the classical sqrt(T) bound. In this work, we study the question of whether an algorithm really requires a hint at every time step. Somewhat surprisingly, we show that an algorithm can obtain logarithmic regret with just O(sqrt(T)) hints under a natural query model. We give two applications of our result, to the well-studied setting of optimistic regret bounds and to the problem of online learning with abstention. 
    more » « less
  2. Cussens, James ; Zhang, Kun (Ed.)
    We investigate the problem of combinatorial multi-armed bandits with stochastic submodular (in expectation) rewards and full-bandit feedback, where no extra information other than the reward of selected action at each time step $t$ is observed. We propose a simple algorithm, Explore-Then-Commit Greedy (ETCG) and prove that it achieves a $(1-1/e)$-regret upper bound of $\mathcal{O}(n^\frac{1}{3}k^\frac{4}{3}T^\frac{2}{3}\log(T)^\frac{1}{2})$ for a horizon $T$, number of base elements $n$, and cardinality constraint $k$. We also show in experiments with synthetic and real-world data that the ETCG empirically outperforms other full-bandit methods. 
    more » « less
  3. We consider a multi-agent multi-armed bandit setting in which n honest agents collaborate over a network to minimize regret but m malicious agents can disrupt learning arbitrarily. Assuming the network is the complete graph, existing algorithms incur O((m + K/n) łog (T) / Δ ) regret in this setting, where K is the number of arms and Δ is the arm gap. For m łl K, this improves over the single-agent baseline regret of O(Kłog(T)/Δ). In this work, we show the situation is murkier beyond the case of a complete graph. In particular, we prove that if the state-of-the-art algorithm is used on the undirected line graph, honest agents can suffer (nearly) linear regret until time is doubly exponential in K and n . In light of this negative result, we propose a new algorithm for which the i -th agent has regret O(( dmal (i) + K/n) łog(T)/Δ) on any connected and undirected graph, where dmal(i) is the number of i 's neighbors who are malicious. Thus, we generalize existing regret bounds beyond the complete graph (where dmal(i) = m), and show the effect of malicious agents is entirely local (in the sense that only the dmal (i) malicious agents directly connected to i affect its long-term regret). 
    more » « less
  4. While distributional reinforcement learning (DistRL) has been empirically effective, the question of when and why it is better than vanilla, non-distributional RL has remained unanswered. This paper explains the benefits of DistRL through the lens of small-loss bounds, which are instance-dependent bounds that scale with optimal achievable cost. Particularly, our bounds converge much faster than those from non-distributional approaches if the optimal cost is small. As warmup, we propose a distributional contextual bandit (DistCB) algorithm, which we show enjoys small-loss regret bounds and empirically outperforms the state-of-the-art on three real-world tasks. In online RL, we propose a DistRL algorithm that constructs confidence sets using maximum likelihood estimation. We prove that our algorithm enjoys novel small-loss PAC bounds in low-rank MDPs. As part of our analysis, we introduce the l1 distributional eluder dimension which may be of independent interest. Then, in offline RL, we show that pessimistic DistRL enjoys small-loss PAC bounds that are novel to the offline setting and are more robust to bad single-policy coverage. 
    more » « less
  5. null (Ed.)
    In this paper, we study Federated Bandit, a decentralized Multi-Armed Bandit problem with a set of N agents, who can only communicate their local data with neighbors described by a connected graph G. Each agent makes a sequence of decisions on selecting an arm from M candidates, yet they only have access to local and potentially biased feedback/evaluation of the true reward for each action taken. Learning only locally will lead agents to sub-optimal actions while converging to a no-regret strategy requires a collection of distributed data. Motivated by the proposal of federated learning, we aim for a solution with which agents will never share their local observations with a central entity, and will be allowed to only share a private copy of his/her own information with their neighbors. We first propose a decentralized bandit algorithm \textttGossip\_UCB, which is a coupling of variants of both the classical gossiping algorithm and the celebrated Upper Confidence Bound (UCB) bandit algorithm. We show that \textttGossip\_UCB successfully adapts local bandit learning into a global gossiping process for sharing information among connected agents, and achieves guaranteed regret at the order of O(\max\ \textttpoly (N,M) łog T, \textttpoly (N,M)łog_łambda_2^-1 N\ ) for all N agents, where łambda_2\in(0,1) is the second largest eigenvalue of the expected gossip matrix, which is a function of G. We then propose \textttFed\_UCB, a differentially private version of \textttGossip\_UCB, in which the agents preserve ε-differential privacy of their local data while achieving O(\max \\frac\textttpoly (N,M) ε łog^2.5 T, \textttpoly (N,M) (łog_łambda_2^-1 N + łog T) \ ) regret. 
    more » « less