skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A comparison of raster-based point density calculations to vector-based counterparts as applied to the study of food availability
Abstract BackgroundProximity to food sources is one of the quantifiable factors measurable across space impacting diet-related health outcomes. Contemporary research has coined the terms ‘food desert’ and ‘food swamp’, sometimes combined with a poverty component, to highlight disproportionate access to healthy and unhealthy food sources. However, there are various ways to measure this proximity—i.e., food availability in this research. Dollar stores such as Dollar General, Family Dollar, and Dollar Tree are one emerging facet of the food environment that provides healthy and unhealthy food options yet have not fully been studied. With more ways to easily measure food availability within the confines of a GIS, this paper proposes a new raster-based Point Density metric to measure the availability of these Dollar stores. In this study, this raster-based metric was calculated for a 6-county region in central North Carolina and compared to six other availability metrics utilized in food security research. A novel Python-based tool to compute the Jaccard Index between these various availability metrics and a matrix to compare these pairwise Jaccard Index calculations was created for this raster-based metric, which is very easy to derive. ResultsUsing a pairwise Jaccard Index summarized and then averaged in a correlation table, the Point Density measure rated the highest (.65) when compared to 6 other popular vector-based techniques. Our results showed the density metric performed statistically better than Euclidean distance, drive-time, density, and point-in-polygon vector metrics when measuring availability for Dollar stores in Central North Carolina. ConclusionsResults reinforce the efficacy of this easy-to-compute metric comparable to vector-based counterparts that require more robust network and/or geoprocessing calculations. Results quantitatively evaluate food availability with an eventual goal of dictating local, regional, and even state-level policy that critically and holistically consider this metric as powerful and convenient metric that can be easily calculated by the lay GIS user and understood by anyone.  more » « less
Award ID(s):
2226312
PAR ID:
10486680
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Agriculture & Food Security
Volume:
13
Issue:
1
ISSN:
2048-7010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robinson, Peter (Ed.)
    Abstract MotivationThe Jaccard similarity on k-mer sets has shown to be a convenient proxy for sequence identity. By avoiding expensive base-level alignments and comparing reduced sequence representations, tools such as MashMap can scale to massive numbers of pairwise comparisons while still providing useful similarity estimates. However, due to their reliance on minimizer winnowing, previous versions of MashMap were shown to be biased and inconsistent estimators of Jaccard similarity. This directly impacts downstream tools that rely on the accuracy of these estimates. ResultsTo address this, we propose the minmer winnowing scheme, which generalizes the minimizer scheme by use of a rolling minhash with multiple sampled k-mers per window. We show both theoretically and empirically that minmers yield an unbiased estimator of local Jaccard similarity, and we implement this scheme in an updated version of MashMap. The minmer-based implementation is over 10 times faster than the minimizer-based version under the default ANI threshold, making it well-suited for large-scale comparative genomics applications. Availability and implementationMashMap3 is available at https://github.com/marbl/MashMap. 
    more » « less
  2. Abstract An unhealthy diet is a major risk factor for chronic diseases including cardiovascular disease, type 2 diabetes, and cancer 1–4 . Limited access to healthy food options may contribute to unhealthy diets 5,6 . Studying diets is challenging, typically restricted to small sample sizes, single locations, and non-uniform design across studies, and has led to mixed results on the impact of the food environment 7–23 . Here we leverage smartphones to track diet health, operationalized through the self-reported consumption of fresh fruits and vegetables, fast food and soda, as well as body-mass index status in a country-wide observational study of 1,164,926 U.S. participants (MyFitnessPal app users) and 2.3 billion food entries to study the independent contributions of fast food and grocery store access, income and education to diet health outcomes. This study constitutes the largest nationwide study examining the relationship between the food environment and diet to date. We find that higher access to grocery stores, lower access to fast food, higher income and college education are independently associated with higher consumption of fresh fruits and vegetables, lower consumption of fast food and soda, and lower likelihood of being affected by overweight and obesity. However, these associations vary significantly across zip codes with predominantly Black, Hispanic or white populations. For instance, high grocery store access has a significantly larger association with higher fruit and vegetable consumption in zip codes with predominantly Hispanic populations (7.4% difference) and Black populations (10.2% difference) in contrast to zip codes with predominantly white populations (1.7% difference). Policy targeted at improving food access, income and education may increase healthy eating, but intervention allocation may need to be optimized for specific subpopulations and locations. 
    more » « less
  3. null (Ed.)
    In this paper, we propose a new design variety metric based on the Herfindahl index. We also propose a practical procedure for comparing variety metrics via the construction of ground truth datasets from pairwise comparisons by experts. Using two new datasets, we show that this new variety measure aligns with human ratings more than some existing and commonly used tree-based metrics. This metric also has three main advantages over existing metrics: a) It is a super-modular function, which enables us to optimize design variety using a polynomial time greedy algorithm. b) The parametric nature of this metric allows us to fit the metric to better represent variety for new domains. c) It has higher sensitivity in distinguishing between variety of sets of randomly selected designs than existing methods. Overall, our results shed light on some qualities that good design variety metrics should possess and the non-trivial challenges associated with collecting the data needed to measure those qualities. 
    more » « less
  4. In this paper, we propose a new design variety metric based on the Herfindahl index. We also propose a practical procedure for comparing variety metrics via the construction of ground truth datasets from pairwise comparisons by experts. Using two new datasets, we show that this new variety measure aligns with human ratings more than some existing and commonly used tree-based metrics. This metric also has three main advantages over existing metrics: a) It is a super-modular function, which enables us to optimize design variety using a polynomial time greedy algorithm. b) The parametric nature of this metric allows us to fit the metric to better represent variety for new domains. c) It has higher sensitivity in distinguishing between variety of sets of randomly selected designs than existing methods. Overall, our results shed light on some qualities that good design variety metrics should possess and the non-trivial challenges associated with collecting the data needed to measure those qualities. 
    more » « less
  5. In this paper, we propose a new design variety metric based on the Herfindahl index. We also propose a practical procedure for comparing variety metrics via the construction of ground truth datasets from pairwise comparisons by experts. Using two new datasets, we show that this new variety measure aligns with human ratings more than some existing and commonly used tree-based metrics. This metric also has three main advantages over existing metrics: a) It is a super-modular function, which enables us to optimize design variety using a polynomial time greedy algorithm. b) The parametric nature of this metric allows us to fit the metric to better represent variety for new domains. c) It has higher sensitivity in distinguishing between variety of sets of randomly selected designs than existing methods. Overall, our results shed light on some qualities that good design variety metrics should possess and the non-trivial challenges associated with collecting the data needed to measure those qualities. 
    more » « less