skip to main content


This content will become publicly available on January 20, 2025

Title: Hydrogel Alginate Considerations for Improved 3D Matrix Stability and Cell Graft Viability and Function in Studying Type 1 Diabetes In Vitro
Abstract

Biomedical devices such as islet‐encapsulating systems are used for treatment of type 1 diabetes (T1D). Despite recent strides in preventing biomaterial fibrosis, challenges remain for biomaterial scaffolds due to limitations on cells contained within. The study demonstrates that proliferation and function of insulinoma (INS‐1) cells as well as pancreatic rat islets may be improved in alginate hydrogels with optimized gel%, crosslinking, and stiffness. Quantitative polymerase chain reaction (qPCR)‐based graft phenotyping of encapsulated INS‐1 cells and pancreatic islets identified a hydrogel stiffness range between 600 and 1000 Pa that improved insulin Ins and Pdx1 gene expression as well as glucose‐sensitive insulin‐secretion. Barium chloride (BaCl2) crosslinking time is also optimized due to toxicity of extended exposure. Despite possible benefits to cell viability, calcium chloride (CaCl2)‐crosslinked hydrogels exhibited a sharp storage modulus loss in vitro. Despite improved stability, BaCl2‐crosslinked hydrogels also exhibited stiffness losses over the same timeframe. It is believed that this is due to ion exchange with other species in culture media, as hydrogels incubated in dIH2O exhibited significantly improved stability. To maintain cell viability and function while increasing 3D matrix stability, a range of useful media:dIH2O dilution ratios for use are identified. Such findings have importance to carry out characterization and optimization of cell microphysiological systems with high fidelity in vitro.

 
more » « less
NSF-PAR ID:
10486784
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Biology
ISSN:
2701-0198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In vitro differentiation of human induced pluripotent stem cells (iPSCs) into functional islets holds immense potential to create an unlimited source of islets for diabetes research and treatment. A continuous challenge in this field is to generate glucose-responsive mature islets. We herein report a previously undiscovered angiopoietin signal for in vitro islet development. We revealed, for the first time, that angiopoietins, including angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) permit the generation of islets from iPSCs with elevated glucose responsiveness, a hallmark of mature islets. Angiopoietin-stimulated islets exhibited glucose synchronized calcium ion influx in repetitive glucose challenges. Moreover, Ang2 augmented the expression of all islet hormones, including insulin, glucagon, somatostatin, and pancreatic polypeptide; and β cell transcription factors, including NKX6.1, MAFA, UCN3, and PDX1. Furthermore, we showed that the Ang2 stimulated islets were able to regulate insulin exocytosis through actin-filament polymerization and depolymerization upon glucose challenge, presumably through the CDC42-RAC1-gelsolin mediated insulin secretion signaling pathway. We also discovered the formation of endothelium within the islets under Ang2 stimulation. These results strongly suggest that angiopoietin acts as a signaling molecule to endorse in vitro islet development from iPSCs.

     
    more » « less
  2.  
    more » « less
  3. Abstract Pancreatic islet transplantation can cure diabetes but requires accessible, high-quality islets in sufficient quantities. Cryopreservation could solve islet supply chain challenges by enabling quality-controlled banking and pooling of donor islets. Unfortunately, cryopreservation has not succeeded in this objective, as it must simultaneously provide high recovery, viability, function and scalability. Here, we achieve this goal in mouse, porcine, human and human stem cell (SC)-derived beta cell (SC-beta) islets by comprehensive optimization of cryoprotectant agent (CPA) composition, CPA loading and unloading conditions and methods for vitrification and rewarming (VR). Post-VR islet viability, relative to control, was 90.5% for mouse, 92.1% for SC-beta, 87.2% for porcine and 87.4% for human islets, and it remained unchanged for at least 9 months of cryogenic storage. VR islets had normal macroscopic, microscopic, and ultrastructural morphology. Mitochondrial membrane potential and adenosine triphosphate (ATP) levels were slightly reduced, but all other measures of cellular respiration, including oxygen consumption rate (OCR) to produce ATP, were unchanged. VR islets had normal glucose-stimulated insulin secretion (GSIS) function in vitro and in vivo. Porcine and SC-beta islets made insulin in xenotransplant models, and mouse islets tested in a marginal mass syngeneic transplant model cured diabetes in 92% of recipients within 24–48 h after transplant. Excellent glycemic control was seen for 150 days. Finally, our approach processed 2,500 islets with >95% islets recovery at >89% post-thaw viability and can readily be scaled up for higher throughput. These results suggest that cryopreservation can now be used to supply needed islets for improved transplantation outcomes that cure diabetes. 
    more » « less
  4. Abstract

    Thiol–norbornene (thiol–ene) photoclickable poly(ethylene glycol) (PEG) hydrogels are a versatile biomaterial for cell encapsulation, drug delivery, and regenerative medicine. Numerous in vitro studies with these 4‐arm ester‐linked PEG‐norbornene (PEG‐4eNB) hydrogels demonstrate robust cytocompatibility and ability to retain long‐term integrity with nondegradable crosslinkers. However, when transplanted in vivo into the subcutaneous or intraperitoneal space, these PEG‐4eNB hydrogels with nondegradable crosslinkers rapidly degrade within 24 h. This characteristic limits the usefulness of PEG‐4eNB hydrogels in biomedical applications. Replacing the ester linkage with an amide linkage (PEG‐4aNB) mitigates this rapid in vivo degradation, and the PEG‐4aNB hydrogels maintain long‐term in vivo stability for months. Furthermore, when compared to PEG‐4eNB, the PEG‐4aNB hydrogels demonstrate equivalent mechanical properties, crosslinking kinetics, and high cytocompatibility with rat islets and human mesenchymal stem cells. Thus, the PEG‐4aNB hydrogels may be a suitable replacement platform without necessitating critical design changes or sacrificing key properties relevant to the well‐established PEG‐4eNB hydrogels.

     
    more » « less
  5. Abstract There is a need for new in vitro systems that enable pharmaceutical companies to collect more physiologically-relevant information on drug response in a low-cost and high-throughput manner. For this purpose, three-dimensional (3D) spheroidal models have been established as more effective than two-dimensional models. Current commercial techniques, however, rely heavily on self-aggregation of dissociated cells and are unable to replicate key features of the native tumor microenvironment, particularly due to a lack of control over extracellular matrix components and heterogeneity in shape, size, and aggregate forming tendencies. In this study, we overcome these challenges by coupling tissue engineering toolsets with microfluidics technologies to create engineered cancer microspheres. Specifically, we employ biosynthetic hydrogels composed of conjugated poly(ethylene glycol) (PEG) and fibrinogen protein (PEG-Fb) to create engineered breast and colorectal cancer tissue microspheres for 3D culture, tumorigenic characterization, and examination of potential for high-throughput screening (HTS). MCF7 and MDA-MB-231 cell lines were used to create breast cancer microspheres and the HT29 cell line and cells from a stage II patient-derived xenograft (PDX) were encapsulated to produce colorectal cancer (CRC) microspheres. Using our previously developed microfluidic system, highly uniform cancer microspheres (intra-batch coefficient of variation (CV) ≤ 5%, inter-batch CV < 2%) with high cell densities (>20×106 cells/ml) were produced rapidly, which is critical for use in drug testing. Encapsulated cells maintained high viability and displayed cell type-specific differences in morphology, proliferation, metabolic activity, ultrastructure, and overall microsphere size distribution and bulk stiffness. For PDX CRC microspheres, the percentage of human (70%) and CRC (30%) cells was maintained over time and similar to the original PDX tumor, and the mechanical stiffness also exhibited a similar order of magnitude (103 Pa) to the original tumor. The cancer microsphere system was shown to be compatible with an automated liquid handling system for administration of drug compounds; MDA-MB-231 microspheres were distributed in 384 well plates and treated with staurosporine (1 μM) and doxorubicin (10 μM). Expected responses were quantified using CellTiter-Glo® 3D, demonstrating initial applicability to HTS drug discovery. PDX CRC microspheres were treated with Fluorouracil (5FU) (10 to 500 μM) and displayed a decreasing trend in metabolic activity with increasing drug concentration. Providing a more physiologically relevant tumor microenvironment in a high-throughput and low-cost manner, the PF hydrogel-based cancer microspheres could potentially improve the translational success of drug candidates by providing more accurate in vitro prediction of in vivo drug efficacy. Citation Format: Elizabeth A. Lipke, Wen J. Seeto, Yuan Tian, Mohammadjafar Hashemi, Iman Hassani, Benjamin Anbiah, Nicole L. Habbit, Michael W. Greene, Dmitriy Minond, Shantanu Pradhan. Production of cancer tissue-engineered microspheres for high-throughput screening [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 175. 
    more » « less