skip to main content


This content will become publicly available on December 22, 2024

Title: Wingtip‐Flexible N ‐Heterocyclic Carbenes: Unsymmetrical Connection between IMes and IPr
Abstract

IMes (IMes=1,3‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene) and IPr (IPr=1,3‐ bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) represent by far the most frequently used N‐heterocyclic carbene ligands in homogeneous catalysis, however, despite numerous advantages, these ligands are limited by the lack of steric flexibility of catalytic pockets. We report a new class of unique unsymmetrical N‐heterocyclic carbene ligands that are characterized by freely‐rotatable N‐aromatic wingtips in the imidazol‐2‐ylidene architecture. The combination of rotatable N−CH2Ar bond with conformationally‐fixed N−Ar linkage results in a highly modular ligand topology, entering the range of geometries inaccessible to IMes and IPr. These ligands are highly reactive in Cu(I)‐catalyzed β‐hydroboration, an archetypal borylcupration process that has had a transformative impact on the synthesis of boron‐containing compounds. The most reactive Cu(I)‐NHC in this class has been commercialized in collaboration with MilliporeSigma to enable broad access of the synthetic chemistry community. The ligands gradually cover %Vburgeometries ranging from 37.3 % to 52.7 %, with the latter representing the largest %Vburdescribed for an IPr analogue, while retaining full flexibility of N‐wingtip. Considering the modular access to novel geometrical space in N‐heterocyclic carbene catalysis, we anticipate that this concept will enable new opportunities in organic synthesis, drug discovery and stabilization of reactive metal centers.

 
more » « less
NSF-PAR ID:
10486881
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
63
Issue:
8
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    IMes (IMes=1,3‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene) and IPr (IPr=1,3‐ bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) represent by far the most frequently used N‐heterocyclic carbene ligands in homogeneous catalysis, however, despite numerous advantages, these ligands are limited by the lack of steric flexibility of catalytic pockets. We report a new class of unique unsymmetrical N‐heterocyclic carbene ligands that are characterized by freely‐rotatable N‐aromatic wingtips in the imidazol‐2‐ylidene architecture. The combination of rotatable N−CH2Ar bond with conformationally‐fixed N−Ar linkage results in a highly modular ligand topology, entering the range of geometries inaccessible to IMes and IPr. These ligands are highly reactive in Cu(I)‐catalyzed β‐hydroboration, an archetypal borylcupration process that has had a transformative impact on the synthesis of boron‐containing compounds. The most reactive Cu(I)‐NHC in this class has been commercialized in collaboration with MilliporeSigma to enable broad access of the synthetic chemistry community. The ligands gradually cover %Vburgeometries ranging from 37.3 % to 52.7 %, with the latter representing the largest %Vburdescribed for an IPr analogue, while retaining full flexibility of N‐wingtip. Considering the modular access to novel geometrical space in N‐heterocyclic carbene catalysis, we anticipate that this concept will enable new opportunities in organic synthesis, drug discovery and stabilization of reactive metal centers.

     
    more » « less
  2. IPr* (IPr* = 1,3-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene) has emerged as a powerful highly hindered and sterically-flexible ligand platform for transition-metal catalysis. CAACs (CAAC = cyclic (al-kyl)(amino)carbenes) have gained major attention as strongly electron-rich carbon analogues of NHCs (NHC = N-heterocyclic carbene) with broad applications in both industry and academia. Herein, we report a merger of CAAC ligands with highly-hindered IPr*. The efficient synthesis, electronic characterization and application in model Cu-catalyzed hydroboration of alkynes is described. The ligands are strongly electron-rich, bulky and flexible around the N-Ar wingtip. The availability of various IPr* and CAAC templates offers a significant potential to expand the existing arsenal of NHC ligands to electron-rich bulky architectures with critical applications in metal stabilization and catalysis. 
    more » « less
  3. IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) represents the most important NHC (NHC = N-heterocyclic carbene) ligand throughout the field of homogeneous catalysis. Herein, we report the synthesis, catalytic activity, and full structural and electronic characterization of novel, sterically-bulky, easily-accessible NHC ligands based on the hash peralkylation concept, including IPr#, Np# and BIAN-IPr#. The new ligands have been commercialized in collaboration with Millipore Sigma: IPr#HCl, 915653; Np#HCl; 915912; BIAN-IPr#HCl, 916420, enabling broad access of the academic and industrial researchers to new ligands for reaction optimization and screening. In particular, the synthesis of IPr# hinges upon cost-effective, modular alkylation of aniline, an industrial chemical that is available in bulk. The generality of this approach in ligand design is demonstrated through facile synthesis of BIAN-IPr# and Np#, two ligands that differ in steric properties and N-wingtip arrangement. The broad activity in various cross-coupling reactions in an array of N–C, O–C, C–Cl, C–Br, C–S and C–H bond cross-couplings is demonstrated. The evaluation of steric, electron-donating and π-accepting properties as well as coordination chemistry to Au( i ), Rh( i ) and Pd( ii ) is presented. Given the tremendous importance of NHC ligands in homogenous catalysis, we expect that this new class of NHCs will find rapid and widespread application. 
    more » « less
  4. ItBu (ItBu = 1,3-di- tert -butylimidazol-2-ylidene) represents the most important and most versatile N -alkyl N-heterocyclic carbene available in organic synthesis and catalysis. Herein, we report the synthesis, structural characterization and catalytic activity of ItOct (I t Octyl), C 2 -symmetric, higher homologues of ItBu. The new ligand class, including saturated imidazolin-2-ylidene analogues has been commercialized in collaboration with MilliporeSigma: ItOct, 929 298; SItOct, 929 492 to enable broad access of the academic and industrial researchers within the field of organic and inorganic synthesis. We demonstrate that replacement of the t -Bu side chain with t -Oct results in the highest steric volume of N -alkyl N-heterocyclic carbenes reported to date, while retaining the electronic properties inherent to N-aliphatic ligands, such as extremely strong σ-donation crucial to the reactivity of N -alkyl N-heterocyclic carbenes. An efficient large-scale synthesis of imidazolium ItOct and imidazolinium SItOct carbene precursors is presented. Coordination chemistry to Au( i ), Cu( i ), Ag( i ) and Pd( ii ) as well as beneficial effects on catalysis using Au( i ), Cu( i ), Ag( i ) and Pd( ii ) complexes are described. Considering the tremendous importance of ItBu in catalysis, synthesis and metal stabilization, we anticipate that the new class of ItOct ligands will find wide application in pushing the boundaries of new and existing approaches in organic and inorganic synthesis. 
    more » « less
  5. We report a general, highly selective method for Suzuki–Miyaura cross-coupling of N-acylphthalimides via N–C(O) acyl cleavage catalyzed by Pd–PEPPSI-type precatalysts. Of broad synthetic interest, the method introduces N-acylphthalimides as new, bench-stable, highly reactive, twist-controlled, amide-based precursors to acyl-metal intermediates. The reaction delivers functionalized biaryl ketones by acylative Suzuki–Miyaura cross-coupling with readily available boronic acids. Studies demonstrate that cheap, easily prepared, and broadly applicable Pd–PEPPSI-type precatalysts supported by a sterically demanding IPr (1,3-Bis-(2,6-diisopropylphenyl)imidazol-2-ylidene) ancillary ligand provide high yields in this reaction. Preliminary selectivity studies and the effect of Pd–N-heterocyclic carbenes (NHC) complexes with allyl-type throw-away ligands are described. We expect that N-acylphthalimides will find significant use as amide-based acyl coupling reagents and cross-coupling precursors to acyl-metal intermediates. 
    more » « less