We have developed a new composite model chemistry method called WMS (Wuhan–Minnesota scaling method) with three characteristics: (1) a composite scheme to approximate the complete configuration interaction valence energy with the affordability condition of requiring no calculation more expensive than CCSD(T)/jul-cc-pV(T+d)Z, (2) low-cost methods for the inner-shell correlation contribution and scalar relativistic correction, and (3) accuracy comparable to methods with post-CCSD(T) components. The new method is shown to be accurate for the W4-17 database of 200 atomization energies with an average mean unsigned error (averaged with equal weight over strongly correlated and weakly correlated subsets of the data) of 0.45 kcal mol −1 , and the performance/cost ratio of these results compares very favorably to previously available methods. We also assess the WMS method against the DBH24-W4 database of diverse barrier heights and the energetics of the reactions of three strongly correlated Criegee intermediates with water. These results demonstrate that higher-order correlation contributions necessary to obtain high accuracy for molecular thermochemistry may be successfully extrapolated from the lower-order components of CCSD(T) calculations, and chemical accuracy can now be obtained for larger and more complex molecules and reactions.
more »
« less
High-level ab initio composites: thermochemical bond dissociation energies for vanadium species
Bond dissociation energies (BDE) are key descriptors for molecules and are among the most sought-after properties in chemistry. Despite their importance, the accurate prediction of BDE’s for transition metal species can be particularly daunting for both experiment and computation. Experimental data has been limited and, when available, often has large error bars, making the critical evaluation and identification of suitable computational methods difficult. However, recent advancements in the experimental determination of BDE’s with techniques such as Velocity Map Imaging and 2 Photon Ionization now provide useful gauges for computational strategies and new methodologies, providing energies with unprecedented accuracies. The vanadium diatomics (VX, X=B, C, N, O, F, Al, Si, P, S, Cl) have been challenging for computational chemistry methods, and, thus, a new experimental gauge enables methods to be reevaluated and developed for these species. Herein, the super-correlation consistent Composite (super-ccCA or s-ccCA), a new thermochemical scheme centered around CCSD(T)/complete basis set (CBS) limit computations with additional contributions that account for scalar-relativistic effects, and coupled cluster contributions beyond CCSD(T) up to quintuple excitations has been considered. The agreement between determinations made by the s-ccCA scheme and by recent experiment is excellent, demonstrating the utility of the new approach in addressing challenging metal systems, even those of multireference nature. In light of recent experimental BDE’s, the longstanding correlation consistent composite approach (ccCA) is also evaluated for the VX species and find that the mean absolute deviation (MAD) is greatly reduced compared to previously used experimental values.
more »
« less
- Award ID(s):
- 1900086
- PAR ID:
- 10486899
- Publisher / Repository:
- Taylor & Francis
- Date Published:
- Journal Name:
- Molecular Physics
- Volume:
- 121
- Issue:
- 24
- ISSN:
- 0026-8976
- Subject(s) / Keyword(s):
- Electronic structure transition metals thermochemistry ab initio composite s-ccCA
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Obtaining sub-chemical accuracy (1 kJ mol−1) for reaction energies of medium-sized gas-phase molecules is a longstanding challenge in the field of thermochemical modeling. The perturbative triples correction to coupled-cluster single double triple [CCSD(T)] constitutes an important component of all high-accuracy composite model chemistries that obtain this accuracy but can be a roadblock in the calculation of medium to large systems due to its O(N7) scaling, particularly in HEAT-like model chemistries that eschew separation of core and valence correlation. This study extends the work of Lesiuk [J. Chem. Phys. 156, 064103 (2022)] with new approximate methods and assesses the accuracy of five different approximations of (T) in the context of a subset of molecules selected from the W4-17 dataset. It is demonstrated that all of these approximate methods can achieve sub-0.1 kJ mol−1 accuracy with respect to canonical, density-fitted (T) contributions with a modest number of projectors. The approximation labeled Z̃T appears to offer the best trade-off between cost and accuracy and shows significant promise in an order-of-magnitude reduction in the computational cost of the CCSD(T) component of high-accuracy model chemistries.more » « less
-
Coupled cluster theory has had a momentous impact on the ab initio prediction of molecular properties, and remains a staple ingratiate in high-accuracy thermochemical model chemistries. However, these methods require inclusion of at least some connected quadruple excitations, which generally scale at best as 𝒪(𝑁9) with the number of basis functions. It is very difficult to predict, a priori, the effect correlation of past CCSD(T) on a given reaction energy. The purpose of this work is to examine cost-effective quadruple corrections based on the factorization theorem of the many-body perturbation theory that may address these challenges. We show that the 𝒪(𝑁7) factorized CCSD(TQf) method introduces minimal error to predicted correlation and reaction energies as compared to the 𝒪(𝑁9) CCSD(TQ). Further, we examine the performance of Goodson’s continued fraction method in the estimation of CCSDT(Q)Λ contributions to reaction energies as well as a “new” method related to %TAE[(T)] that we refer to as a scaled perturbation estimator. We find that the scaled perturbation estimator based upon CCSD(TQf)/cc-pVDZ is capable of predicting CCSDT(Q)Λ/cc-pVDZ contributions to reaction energies with an average error of 0.07 kcal mol–1 and an L2D of 0.52 kcal mol–1 when applied to a test-suite of nearly 3000 reactions. This offers a means by which to reliably “ballpark” how important post-CCSD(T) contributions are to reaction energies while incurring no more than CCSD(T) formal cost and a little mental math.more » « less
-
The rhenium-containing molecules ReC, ReN, ReO, ReS, and ReC2 have been investigated using a pulsed laser ablation supersonic beam molecular source in resonant two-photon ionization experiments with time-of-flight mass spectrometric detection. Sharp predissociation thresholds have been observed, allowing precise bond dissociation energies (BDEs) to be measured as D0(ReC) = 5.731(3) eV, D0(ReN) = 5.635(3) eV, D0(ReO) = 5.510(3) eV, D0(ReS) = 3.947(3) eV, and D0(Re–C2) = 5.359(3) eV. The threshold for two-photon ionization was also measured for ReC, ReN, and ReO, providing ionization energies (IEs) of IE(ReC) = 8.425(12) eV, IE(ReN) = 8.193(20) eV, and IE(ReO) = 8.561(11) eV. These are the first measurements of these thermochemical quantities to be reported in the literature. The combination of BDEs and IEs allowed the BDEs of the cations ReC+, ReN+, and ReO+ to be determined via a thermochemical cycle as D0(Re+-C) = 5.140(12) eV, D0(Re+-N) = 5.275(20) eV, and D0(Re+-O) = 4.783(11) eV. In addition, computations of these thermochemical values were performed using density functional theory [B3LYP/aug-cc-pVQZ(-PP)] to determine the ground states and their geometric parameters. These were further studied at the CCSD(T) level with extrapolation to the complete basis set limit using aug-cc-pVXZ(-PP) basis sets (X = 3, 4, 5) to obtain computational values of the BDEs and IEs as well. The high-level super correlation consistent composite approach (s-ccCA) was also utilized, providing an additional approach for the prediction of thermochemical values. The electronic structure of the molecules is discussed, along with the periodic trends as the ligand is varied.more » « less
-
Domain‐based local pair natural orbital methods within the correlation consistent composite approachAb initio composite approaches have been utilized to model and predict main group thermochemistry within 1 kcal mol−1, on average, from well‐established reliable experiments, primarily for molecules with less than 30 atoms. For molecules of increasing size and complexity, such as biomolecular complexes, composite methodologies have been limited in their application. Therefore, the domain‐based local pair natural orbital (DLPNO) methods have been implemented within the correlation consistent composite approach (ccCA) framework, namely DLPNO‐ccCA, to reduce the computational cost (disk space, CPU (central processing unit) time, memory) and predict energetic properties such as enthalpies of formation, noncovalent interactions, and conformation energies for organic biomolecular complexes including one of the largest molecules examined via composite strategies, within 1 kcal mol−1, after calibration with 119 molecules and a set of linear alkanes. © 2019 Wiley Periodicals, Inc.more » « less
An official website of the United States government

