skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photometric Survey of Neptune's Trojan Asteroids. I. The Color Distribution
Abstract In 2018, Jewitt identified the “The Trojan Color Conundrum,” namely that Neptune's Trojan asteroids (NTs) had no ultrared members, unlike the the nearby Kuiper Belt. Since then, numerous ultrared NTs have been discovered, seemingly resolving this conundrum. However, it is still unclear whether or not the Kuiper Belt has a color distribution consistent with the NT population, as would be expected if it were the source population. In this work, we present a new photometric survey of 15 out of 31 NTs. We utilized the Sloan g r i z filters on the IMACS f/4 instrument, which is mounted on the 6.5 m Baade telescope. In this survey, we identify four NTs as being ultrared using a principal component analysis. This result brings the ratio of red to ultrared NTs to 7.75:1, more consistent with the corresponding trans-Neptunian object ratio of 4–11:1. We also identify three targets as being blue (nearly solar) in color. Such objects may be C-type surfaces, but we see more of these blue NTs than has been observed in the Kuiper Belt. Finally, we show that there are hints of a color-absolute magnitude (H) correlation, with larger H (smaller sized, lower albedo) tending to be more red, but more data are needed to confirm this result. The origin of such a correlation remains an open question that will be addressed by future observations of the surface composition of these targets and their rotational properties.  more » « less
Award ID(s):
2009096
PAR ID:
10486969
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Planetary Science Journal
Date Published:
Journal Name:
The Planetary Science Journal
Volume:
4
Issue:
8
ISSN:
2632-3338
Page Range / eLocation ID:
135
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dynamically excited objects within the Kuiper Belt show a bimodal distribution in their surface colors, and these differing surface colors may be a tracer of where these objects formed. In this work, we explore radial color distributions in the primordial planetesimal disk and implications for the positions of ice line/color transitions within the Kuiper Belt’s progenitor populations. We combine a full dynamical model of the Kuiper Belt’s evolution due to Neptune’s migration with precise surface colors measured by the Colours of the Outer Solar System Origins Survey in order to examine the true color ratios within the Kuiper Belt and the ice lines within the primordial disk. We investigate the position of a dominant, surface color–changing ice line, with two possible surface color layouts within the initial disk: (1) inner neutral surfaces and outer red and (2) inner red surfaces and outer neutral. We performed simulations with a primordial disk that truncates at 30 au. By radially stepping the color transition out through 0.5 au intervals, we show that both disk configurations are consistent with the observed color fraction. For an inner neutral, outer red primordial disk, we find that the color transition can be at 28 3 + 2 au at a 95% confidence level. For an inner red, outer neutral primordial disk, the color transition can be at 27 3 + 3 au at a 95% confidence level. 
    more » « less
  2. Abstract A test of lepton flavor universality in B ± K ± μ + μ and B ± K ± e + e decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B ± K ± μ + μ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at s = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions B ( B ± K ± μ + μ ) to B ( B ± K ± e + e ) is determined from the measured double ratio R ( K ) of these decays to the respective branching fractions of the B ± J / ψ K ± with J / ψ μ + μ and e + e decays, which allow for significant cancellation of systematic uncertainties. The ratio R ( K ) is measured in the range 1.1 < q 2 < 6.0 GeV 2 , whereqis the invariant mass of the lepton pair, and is found to be R ( K ) = 0.78 0.23 + 0.47 , in agreement with the standard model expectation R ( K ) 1 . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, B ( B ± K ± μ + μ ) = ( 12.42 ± 0.68 ) × 10 8 , is consistent with the present world-average value and has a comparable precision. 
    more » « less
  3. Abstract A search for resonances in top quark pair ( t t ) production in final states with two charged leptons and multiple jets is presented, based on proton–proton collision data collected by the CMS experiment at the CERN LHC at s = 13 TeV , corresponding to 138 fb−1. The analysis explores the invariant mass of the t t system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic t t threshold compared to the non-resonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ( 1 S 0 [ 1 ] ) quasi-bound toponium state, as predicted by non-relativistic quantum chromodynamics. Using a simplified model for 1 S 0 [ 1 ] toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8 1.4 + 1.2 pb
    more » « less
  4. Abstract We present a direct imaging study of V892 Tau, a young Herbig Ae/Be star with a close-in stellar companion and circumbinary disk. Our observations consist of images acquired via Keck II/NIRC2 with nonredundant masking and the pyramid wavefront sensor at K band (2.12μm) and L band (3.78μm). Sensitivity to low-mass accreting companions and cool disk material is high at L band, while complimentary observations at K band probe hotter material with higher angular resolution. These multiwavelength, multiepoch data allow us to differentiate the secondary stellar emission from disk emission and deeply probe the structure of the circumbinary disk at small angular separations. We constrain architectural properties of the system by fitting geometric disk and companion models to the K - and L -band data. From these models, we constrain the astrometric and photometric properties of the stellar binary and update the orbit, placing the tightest estimates to date on the V892 Tau orbital parameters. We also constrain the geometric structure of the circumbinary disk, and resolve a circumprimary disk for the first time. 
    more » « less
  5. Abstract In the theory of protoplanetary disk turbulence, a widely adopted ansatz, or assumption, is that the turnover frequency of the largest turbulent eddy, ΩL, is the local Keplerian frequency ΩK. In terms of the standard dimensionless Shakura–Sunyaevαparameter that quantifies turbulent viscosity or diffusivity, this assumption leads to characteristic length and velocity scales given respectively by α H and α c , in whichHandcare the local gas scale height and sound speed. However, this assumption is not applicable in cases when turbulence is forced numerically or driven by some natural processes such as vertical shear instability. Here, we explore the more general case where ΩL≥ ΩKand show that, under these conditions, the characteristic length and velocity scales are respectively α / R H and α R c , where R Ω L / Ω K is twice the Rossby number. It follows that α = α ˜ / R , where α ˜ c is the root-mean-square average of the turbulent velocities. Properly allowing for this effect naturally explains the reduced particle scale heights produced in shearing box simulations of particles in forced turbulence, and it may help with interpreting recent edge-on disk observations; more general implications for observations are also presented. For R > 1 , the effective particle Stokes numbers are increased, which has implications for particle collision dynamics and growth, as well as for planetesimal formation. 
    more » « less