The small sample size of tropical cyclone (TC) genesis in the observations prevents us from fully characterizing its spatiotemporal variations. Here we take advantage of a large ensemble of 60-km-resolution atmospheric simulations to address this issue over the northwest Pacific (NWP) during 1951–2010. The variations in annual TC genesis density are explored separately on interannual and decadal time scales. The interannual variability is dominated by two leading modes. One is characterized by a dipole pattern, and its temporal evolution is closely linked to the developing ENSO. The other mode features high loadings in the central part of the basin, with out-of-phase changes near the equator and date line, and tends to occur during ENSO decay years. On decadal time scales, TC genesis density variability is primarily controlled by one mode, which exhibits an east–west dipole pattern with strong signals confined to south of 20°N and is tied to the interdecadal Pacific oscillation–like sea surface temperature anomalies. Further, we investigate the seasonal evolution of the ENSO effect on TC genesis density. The results highlight the distinct impacts of the two types of ENSO (i.e., eastern Pacific vs central Pacific) on TC genesis density in the NWP during a specific season and show the strong seasonal dependency of the TC genesis response to ENSO. Although the results from the observations are not as prominent as those from the simulations because of the small sample size, the high consistency between them demonstrates the fidelity of the model in reproducing TC statistics and variability in the observations.
more » « less- PAR ID:
- 10487035
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 37
- Issue:
- 4
- ISSN:
- 0894-8755
- Format(s):
- Medium: X Size: p. 1111-1129
- Size(s):
- p. 1111-1129
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract This study quantifies the contributions of tropical sea surface temperature (SST) variations during the boreal warm season to the interannual-to-decadal variability in tropical cyclone genesis frequency (TCGF) over the Northern Hemisphere ocean basins. The first seven leading modes of tropical SST variability are found to affect basinwide TCGF in one or more basins, and are related to canonical El Niño–Southern Oscillation (ENSO), global warming (GW), the Pacific meridional mode (PMM), Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the Atlantic meridional mode (AMM). These modes account for approximately 58%, 50%, and 56% of the variance in basinwide TCGF during 1969–2018 over the North Atlantic (NA), northeast Pacific (NEP), and northwest Pacific (NWP) Oceans, respectively. The SST effect is weak on TCGF variability in the north Indian Ocean. The SST modes dominating TCGF variability differ among the basins: ENSO, the AMO, AMM, and GW are dominant for the NA; ENSO and the AMO for the NEP; and the PMM, interannual AMO, and GW for the NWP. A specific mode may have opposite effects on TCGF in different basins, particularly between the NA and NEP. Sliding-window multiple linear regression analyses show that the SST effects on basinwide TCGF are stable in time in the NA and NWP, but have strengthened since the 1990s in the NEP. The SST effects on local TC genesis and occurrence frequency are also explored, and the underlying physical mechanisms are examined by diagnosing a genesis potential index and its components.more » « less
-
Abstract Previous studies argued that the Pacific Meridional Mode (PMM) impacts tropical cyclone (TC) genesis variability over the southeastern part of the western North Pacific (SE‐WNP). Here, we find that the statistical relationship between PMM and SE‐WNP TC genesis frequency is dominated by their co‐variability on decadal timescales. The decadal component of the PMM exhibits very similar temporal and spatial features to quasi‐decadal tropical Pacific sea surface temperature (SST) variability. The latter can affect SE‐WNP TC activity via changes in both zonal vertical wind shear and low‐level vorticity. In contrast, the interannual component of the PMM exhibits no statistically significant correlation with SE‐WNP TC genesis. Furthermore, observations show that both interannual and decadal variability of SE‐WNP TC activity are well correlated with the commonly used Niño3.4 El Niño‐Southern Oscillation index. Thus, equatorial Pacific SST variability is the dominant source of SE‐WNP TC activity predictability on different timescales.
-
Abstract Seasonal predictions of tropical cyclone (TC) landfalls are challenging because seasonal landfall count not only depends on the number and spatial distribution of TC genesis, but also whether those TCs are steered toward land or not. Past studies have separately examined genesis and landfall as a function of large-scale ocean and atmospheric environmental conditions. Here, we introduce a practical statistical framework for estimating the seasonal count of TC landfalls as the product of a Poisson model for seasonal TC genesis and a logistic model for landfall probability. We compute spatial variations in TC landfall and genesis by decomposing TC activity in the western North Pacific (WNP) basin into 10° × 10° bins, then identify coherent regions where El Niño–Southern Oscillation (ENSO) and the western extent of the Pacific subtropical high (WPSH) have significant influences on seasonal landfall count. Our framework shows that ENSO and the WPSH are weakly related to basinwide landfalls but strongly related to regional genesis and landfall probability. ENSO modulates the zonal distribution of TC genesis, consistent with past work, whereas the WPSH modulates the meridional distribution of landfall probability due to variations in steering flow associated with the Pacific subtropical high. These spatial patterns result in four coherent subregions of the WNP basin that define seasonal landfall variations: landfall count increases in the southwestern WNP during a positive WPSH and La Niña, the south-central WNP during a positive WPSH and El Niño, the eastern WNP during a negative WPSH and El Niño, and the northern WNP during a negative WPSH and La Niña.more » « less
-
null (Ed.)Abstract The Indian Ocean has received increasing attention for its large impacts on regional and global climate. However, sea surface temperature (SST) variability arising from Indian Ocean internal processes has not been well understood particularly on decadal and longer timescales, and the external influence from the Tropical Pacific has not been quantified. This paper analyzes the interannual-to-decadal SST variability in the Tropical Indian Ocean in observations and explores the external influence from the Pacific versus internal processes within the Indian Ocean using a Linear Inverse Model (LIM). Coupling between Indian Ocean and tropical Pacific SST anomalies (SSTAs) is assessed both within the LIM dynamical operator and the unpredictable stochastic noise that forces the system. Results show that the observed Indian Ocean Basin (IOB)-wide SSTA pattern is largely a response to the Pacific ENSO forcing, although it in turn has a damping effect on ENSO especially on annual and decadal timescales. On the other hand, the Indian Ocean Dipole (IOD) is an Indian Ocean internal mode that can actively affect ENSO; ENSO also has a returning effect on the IOD, which is rather weak on decadal timescale. The third mode is partly associated with the Subtropical Indian Ocean Dipole (SIOD), and it is primarily generated by Indian Ocean internal processes, although a small component of it is coupled with ENSO. Overall, the amplitude of Indian Ocean internally generated SST variability is comparable to that forced by ENSO, and the Indian Ocean tends to actively influence the tropical Pacific. These results suggest that the Indian-Pacific Ocean interaction is a two-way process.more » « less
-
Abstract El Niño–Southern Oscillation (ENSO) influences seasonal Atlantic tropical cyclone (TC) activity by impacting environmental conditions important for TC genesis. However, the influence of future climate change on the teleconnection between ENSO and Atlantic TCs is uncertain, as climate change is expected to impact both ENSO and the mean climate state. We used the Weather Research and Forecasting Model on a tropical channel domain to simulate 5-member ensembles of Atlantic TC seasons in historical and future climates under different ENSO conditions. Experiments were forced with idealized sea surface temperature configurations based on the Community Earth System Model (CESM) Large Ensemble representing: a monthly varying climatology, eastern Pacific El Niño, central Pacific El Niño, and La Niña. The historical simulations produced fewer Atlantic TCs during eastern Pacific El Niño compared to central Pacific El Niño, consistent with observations and other modeling studies. For each ENSO state, the future simulations produced a similar teleconnection with Atlantic TCs as in the historical simulations. Specifically, La Niña continues to enhance Atlantic TC activity, and El Niño continues to suppress Atlantic TCs, with greater suppression during eastern Pacific El Niño compared to central Pacific El Niño. In addition, we found a decrease in the Atlantic TC frequency in the future relative to historical regardless of ENSO state, which was associated with a future increase in northern tropical Atlantic vertical wind shear and a future decrease in the zonal tropical Pacific sea surface temperature (SST) gradient, corresponding to a more El Niño–like mean climate state. Our results indicate that ENSO will remain useful for seasonal Atlantic TC prediction in the future.