skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating individual tree species classification performance across diverse environments
Abstract Vegetation species mapping using airborne imaging spectroscopy yields accurate results and is important for advancing conservation objectives and biogeographic studies. As these data become more readily available owing to the upcoming launch of spaceborne imaging spectrometers, it is necessary to understand how these data can be used to consistently classify species across large geographic scales. However, few studies have attempted to map species across multiple ecosystems; therefore, little is known regarding the effect of intra-specific variation on the mapping of a single species across a wide range of environments and among varying backgrounds of other non-target species. To explore this effect, we developed and tested species classification models forMetrosideros polymorpha, a highly polymorphic canopy species endemic to Hawai’i, which is found in a diverse array of ecosystems. We compared the accuracies of support vector machine (SVM) and random forest models trained on canopy reflectance data from each of eight distinct ecosystems (ecosystem-specific) and a universal model trained on data from all ecosystems. When applied to ecosystem-specific test datasets, the ecosystem-specific models outperformed the universal model; however, the universal model retained high (>81%) accuracies across all ecosystems. Additionally, we found that models from ecosystems with broad variation inM. polymorphacanopy traits, as estimated using chemometric equations applied to canopy spectra, accurately predictedM. polymorphain other ecosystems. While species classifications across ecosystems can yield accurate results, these results will require sampling procedures that capture the intra-specific variation of the target species.  more » « less
Award ID(s):
2218932
PAR ID:
10487218
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Ecology
Volume:
3
Issue:
1
ISSN:
2752-664X
Format(s):
Medium: X Size: Article No. 011001
Size(s):
Article No. 011001
Sponsoring Org:
National Science Foundation
More Like this
  1. Imaging spectroscopy is a burgeoning tool for understanding ecosystem functioning on large spatial scales, yet the application of this technology to assess intra-specific trait variation across environmental gradients has been poorly tested. Selection of specific genotypes via environmental filtering plays an important role in driving trait variation and thus functional diversity across space and time, but the relative contributions of intra-specific trait variation and species turnover are still unclear. To address this issue, we quantified the variation in reflectance spectra within and between six uniform stands of Metrosideros polymorpha across elevation and soil substrate age gradients on Hawai‘i Island. Airborne imaging spectroscopy and light detection and ranging (LiDAR) data were merged to capture and isolate sunlit portions of canopies at the six M. polymorpha-dominated sites. Both intra-site and inter-site spectral variations were quantified using several analyses. A support vector machine (SVM) model revealed that each site was spectrally distinct, while Euclidean distances between site centroids in principal components (PC) space indicated that elevation and soil substrate age drive the separation of canopy spectra between sites. Coefficients of variation among spectra, as well as the intrinsic spectral dimensionality of the data, demonstrated the hierarchical effect of soil substrate age, followed by elevation, in determining intra-site variation. Assessments based on leaf trait data estimated from canopy reflectance resulted in similar patterns of separation among sites in the PC space and distinction among sites in the SVM model. Using a highly polymorphic species, we demonstrated that canopy reflectance follows known ecological principles of community turnover and thus how spectral remote sensing addresses forest community assembly on large spatial scales. 
    more » « less
  2. Vegetation classifications on large geographic scales are necessary to inform conservation decisions and monitor keystone, invasive, and endangered species. These classifications are often effectively achieved by applying models to imaging spectroscopy, a type of remote sensing data, but such undertakings are often limited in spatial extent. Here we provide accurate, high-resolution spatial data on the keystone species Metrosideros polymorpha, a highly polymorphic tree species distributed across bioclimatic zones and environmental gradients on Hawai’i Island using airborne imaging spectroscopy and LiDAR. We compare two tree species classification techniques, the support vector machine (SVM) and spectral mixture analysis (SMA), to assess their ability to map M. polymorpha over 28,000 square kilometers where differences in topography, background vegetation, sun angle relative to the aircraft, and day of data collection, among others, challenge accurate classification. To capture spatial variability in model performance, we applied Gaussian process classification (GPC) to estimate the spatial probability density of M. polymorpha occurrence using only training sample locations. We found that while SVM and SMA models exhibit similar raw score accuracy over the test set (96.0% and 93.4%, respectively), SVM better reproduces the spatial distribution of M. polymorpha than SMA. We developed a final 2 m × 2 m M. polymorpha presence dataset and a 30 m × 30 m M. polymorpha density dataset using SVM classifications that have been made publicly available for use in conservation applications. Accurate, large-scale species classifications are achievable, but metrics for model performance assessments must account for spatial variation of model accuracy. 
    more » « less
  3. The role of intraspecific trait variation in functional ecology has gained traction in recent years as many papers have observed its importance in driving community diversity and ecology. Yet much of the work in this field relies on field-based trait surveys. Here, we used continuous canopy trait information derived from remote sensing data of a highly polymorphic tree species, Metrosideros polymorpha, to quantify environmental controls on intraspecific trait variation. M. polymorpha, an endemic, keystone tree species in Hawai’i, varies morphologically, chemically, and genetically across broad elevation and soil substrate age gradients, making it an ideal model organism to explore large-scale environmental drivers of intraspecific trait variation. M. polymorpha canopy reflectance (visible to shortwave infrared; 380–2510 nm) and light detection and ranging (LiDAR) data collected by the Global Airborne Observatory were modeled to canopy trait estimates of leaf mass per area, chlorophyll a and b, carotenoids, total carbon, nitrogen, phosphorus, phenols, cellulose, and top of canopy height using previously developed leaf chemometric equations. We explored how these derived traits varied across environmental gradients by extracting elevation, slope, aspect, precipitation, and soil substrate age data at canopy locations. We then obtained the feature importance values of the environmental factors in predicting each leaf trait by training random forest models to predict leaf traits individually. Of these environmental factors, elevation was the most important predictor for all canopy traits. Elevation not only affected canopy traits directly but also indirectly by influencing the relationships between soil substrate age and canopy traits as well as between nitrogen and other traits, as indicated by the change in slope between the variables at different elevation ranges. In conclusion, intraspecific variation in M. polymorpha traits derived from remote sensing adheres to known leaf economic spectrum (LES) patterns as well as interspecific LES traits previously mapped using imaging spectroscopy. 
    more » « less
  4. Coastal mangrove forests provide numerous ecosystem services, which can be disrupted by natural disturbances, mainly hurricanes. Canopy height (CH) is a key parameter for estimating carbon storage. Airborne Light Detection and Ranging (LiDAR) is widely viewed as the most accurate method for estimating CH but data are often limited in spatial coverage and are not readily available for rapid impact assessment after hurricane events. Hence, we evaluated the use of systematically acquired space-based Synthetic Aperture Radar (SAR) and optical observations with airborne LiDAR to predict CH across expansive mangrove areas in South Florida that were severely impacted by Category 3 Hurricane Irma in 2017. We used pre- and post-Irma LiDAR-derived canopy height models (CHMs) to train Random Forest regression models that used features of Sentinel-1 SAR time series, Landsat-8 optical, and classified mangrove maps. We evaluated (1) spatial transfer learning to predict regional CH for both time periods and (2) temporal transfer learning coupled with species-specific error correction models to predict post-Irma CH using models trained by pre-Irma data. Model performance of SAR and optical data differed with time period and across height classes. For spatial transfer, SAR data models achieved higher accuracy than optical models for post-Irma, while the opposite was the case for the pre-Irma period. For temporal transfer, SAR models were more accurate for tall trees (>10 m) but optical models were more accurate for short trees. By fusing data of both sensors, spatial and temporal transfer learning achieved the root mean square errors (RMSEs) of 1.9 m and 1.7 m, respectively, for absolute CH. Predicted CH losses were comparable with LiDAR-derived reference values across height and species classes. Spatial and temporal transfer learning techniques applied to readily available spaceborne satellite data can enable conservation managers to assess the impacts of disturbances on regional coastal ecosystems efficiently and within a practical timeframe after a disturbance event. 
    more » « less
  5. Abstract Understanding the determinants of urban forest diversity and structure is important for preserving biodiversity and sustaining ecosystem services in cities. However, comprehensive field assessments are resource‐intensive, and landscape‐level approaches may overlook heterogeneity within urban regions. To address this challenge, we combined remote sensing with field inventories to comprehensively map and analyze urban forest attributes in forest patches across the Minneapolis‐St. Paul Metropolitan Area (MSPMA) in a multistep process. First, we developed predictive machine learning models of forest attributes by integrating data from forest inventories (from 40 12.5‐m‐radius plots) with Global Ecosystem Dynamics Investigation (GEDI) observations and Sentinel‐2‐derived land surface phenology (LSP). These models enabled accurate predictions of forest attributes, specifically nine metrics of plant diversity (tree species richness, tree abundance, and understory plant abundance), structure (average canopy height, dbh, and canopy density), and structural complexity (variability in canopy height, dbh, and canopy density) with relative errors ranging between 11% and 21%. Second, we applied these machine learning models to predict diversity metrics for 804 additional plots from GEDI and Sentinel‐2. Finally, we applied Bayesian multilevel models to the predicted diversity metrics to assess the influence of multiple factors—patch dimensions, landscape attributes, plot position, and jurisdictional agency—on these forest attributes across the 804 predicted plots. The models showed all predictors have some degree of effect on forest attributes, presenting varying explanatory power withR2values ranging from 0.071 to 0.405. Overall, plot characteristics (e.g., distance to nearest trail, proximity to forest edge) and jurisdictional agency explained a large portion of the variability across patches, whereas patch and landscape characteristics did not. The relative effect of plot versus management sets of predictors on the marginal ΔR2was heterogeneous across metrics and ecological subsections (an ecological classification designation). The multiplicity of determinants influencing urban forests emphasizes the intricate nature of urban ecosystems and highlights nuanced, heterogeneous relationships between urban ecological and anthropogenic factors that determine forest properties. Effectively enhancing biodiversity in urban forests requires assessments, management, and conservation strategies tailored for context‐specific characteristics. 
    more » « less