skip to main content

This content will become publicly available on January 23, 2025

Title: Tandem repeats of highly bioluminescent NanoLuc are refolded noncanonically by the Hsp70 machinery

Chaperones are a large family of proteins crucial for maintaining cellular protein homeostasis. One such chaperone is the 70 kDa heat shock protein (Hsp70), which plays a crucial role in protein (re)folding, stability, functionality, and translocation. While the key events in the Hsp70 chaperone cycle are well established, a relatively small number of distinct substrates were repetitively investigated. This is despite Hsp70 engaging with a plethora of cellular proteins of various structural properties and folding pathways. Here we analyzed novel Hsp70 substrates, based on tandem repeats of NanoLuc (Nluc), a small and highly bioluminescent protein with unique structural characteristics. In previous mechanical unfolding and refolding studies, we have identified interesting misfolding propensities of these Nluc‐based tandem repeats. In this study, we further investigate these properties through in vitro bulk experiments. Similar to monomeric Nluc, engineered Nluc dyads and triads proved to be highly bioluminescent. Using the bioluminescence signal as the proxy for their structural integrity, we determined that heat‐denatured Nluc dyads and triads can be efficiently refolded by theE. coliHsp70 chaperone system, which comprises DnaK, DnaJ, and GrpE. In contrast to previous studies with other substrates, we observed that Nluc repeats can be efficiently refolded by DnaK and DnaJ, even in the absence of GrpE co‐chaperone. Taken together, our study offers a new powerful substrate for chaperone research and raises intriguing questions about the Hsp70 mechanisms, particularly in the context of structurally diverse proteins.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Protein Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The journey by which proteins navigate their energy landscapes to their native structures is complex, involving (and sometimes requiring) many cellular factors and processes operating in partnership with a given polypeptide chain’s intrinsic energy landscape. The cytosolic environment and its complement of chaperones play critical roles in granting many proteins safe passage to their native states; however, it is challenging to interrogate the folding process for large numbers of proteins in a complex background with most biophysical techniques. Hence, most chaperone-assisted protein refolding studies are conducted in defined buffers on single purified clients. Here, we develop a limited proteolysis–mass spectrometry approach paired with an isotope-labeling strategy to globally monitor the structures of refolding  Escherichia coli proteins in the cytosolic medium and with the chaperones, GroEL/ES (Hsp60) and DnaK/DnaJ/GrpE (Hsp70/40). GroEL can refold the majority (85%) of the E. coli proteins for which we have data and is particularly important for restoring acidic proteins and proteins with high molecular weight, trends that come to light because our assay measures the structural outcome of the refolding process itself, rather than binding or aggregation. For the most part, DnaK and GroEL refold a similar set of proteins, supporting the view that despite their vastly different structures, these two chaperones unfold misfolded states, as one mechanism in common. Finally, we identify a cohort of proteins that are intransigent to being refolded with either chaperone. We suggest that these proteins may fold most efficiently cotranslationally, and then remain kinetically trapped in their native conformations. 
    more » « less

    The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones involved in protein folding, aggregate prevention, and protein disaggregation. They consist of the substrate‐binding domain (SBD) that binds client substrates, and the nucleotide‐binding domain (NBD), whose cycles of nucleotide hydrolysis and exchange underpin the activity of the chaperone. To characterize the structure–function relationships that link the binding state of the NBD to its conformational behavior, we analyzed the dynamics of the NBD of the Hsp70 chaperone fromBos taurus(PDB 3C7N:B) by all‐atom canonical molecular dynamics simulations. It was found that essential motions within the NBD fall into three major classes: the mutual class, reflecting tendencies common to all binding states, and the ADP‐ and ATP‐unique classes, which reflect conformational trends that are unique to either the ADP‐ or ATP‐bound states, respectively. “Mutual” class motions generally describe “in‐plane” and/or “out‐of‐plane” (scissor‐like) rotation of the subdomains within the NBD. This result is consistent with experimental nuclear magnetic resonance data on the NBD. The “unique” class motions target specific regions on the NBD, usually surface loops or sites involved in nucleotide binding and are, therefore, expected to be involved in allostery and signal transmission. For all classes, and especially for those of the “unique” type, regions of enhanced mobility can be identified; these are termed “hot spots,” and their locations generally parallel those found by NMR spectroscopy. The presence of magnesium and potassium cations in the nucleotide‐binding pocket was also found to influence the dynamics of the NBD significantly. Proteins 2015; 83:282–299. © 2014 Wiley Periodicals, Inc.

    more » « less
  3. Abstract

    Immunoglobulin Binding Protein (BiP) is a chaperone and molecular motor belonging to the Hsp70 family, involved in the regulation of important biological processes such as synthesis, folding and translocation of proteins in the Endoplasmic Reticulum. BiP has two highly conserved domains: the N‐terminal Nucleotide‐Binding Domain (NBD), and the C‐terminal Substrate‐Binding Domain (SBD), connected by a hydrophobic linker. ATP binds and it is hydrolyzed to ADP in the NBD, and BiP's extended polypeptide substrates bind in the SBD. Like many molecular motors, BiP function depends on both structural and catalytic properties that may contribute to its performance. One novel approach to study the mechanical properties of BiP considers exploring the changes in the viscoelastic behavior upon ligand binding, using a technique called nano‐rheology. This technique is essentially a traditional rheology experiment, in which an oscillatory force is directly applied to the protein under study, and the resulting average deformation is measured. Our results show that the folded state of the protein behaves like a viscoelastic material, getting softer when it binds nucleotides‐ ATP, ADP, and AMP‐PNP‐, but stiffer when binding HTFPAVL peptide substrate. Also, we observed that peptide binding dramatically increases the affinity for ADP, decreasing it dissociation constant (KD) around 1000 times, demonstrating allosteric coupling between SBD and NBD domains.

    more » « less
  4. Abstract

    Bacterial chaperones ClpB and DnaK, homologs of the respective eukaryotic heat shock proteins Hsp104 and Hsp70, are essential in the reactivation of toxic protein aggregates that occur during translation or periods of stress. In the pathogenMycobacterium tuberculosis(Mtb), the protective effect of chaperones extends to survival in the presence of host stresses, such as protein‐damaging oxidants. However, we lack a full understanding of the interplay of Hsps and other stress response genes in mycobacteria. Here, we employ genome‐wide transposon mutagenesis to identify the genes that supportclpBfunction in Mtb. In addition to validating the role of ClpB in Mtb's response to oxidants, we show that HtpG, a homolog of Hsp90, plays a distinct role from ClpB in the proteotoxic stress response. While loss of neitherclpBnorhtpGis lethal to the cell, loss of both through genetic depletion or small molecule inhibition impairs recovery after exposure to host‐like stresses, especially reactive nitrogen species. Moreover, defects in cells lackingclpBcan be complemented by overexpression of other chaperones, demonstrating that Mtb's stress response network depends upon finely tuned chaperone expression levels. These results suggest that inhibition of multiple chaperones could work in concert with host immunity to disable Mtb.

    more » « less
  5. Abstract

    Many proteins must interact with molecular chaperones to achieve their native state in the cell. Yet, how chaperone binding‐site characteristics affect the folding process is poorly understood. The ubiquitous Hsp70 chaperone system prevents client‐protein aggregation by holding unfolded conformations and by unfolding misfolded states. Hsp70 binding sites of client proteins comprise a nonpolar core surrounded by positively charged residues. However, a detailed analysis of Hsp70 binding sites on a proteome‐wide scale is still lacking. Further, it is not known whether proteins undergo some degree of folding while chaperone bound. Here, we begin to address the above questions by identifying Hsp70 binding sites in 2258Escherichia coli(E. coli) proteins. We find that most proteins bear at least one Hsp70 binding site and that the number of Hsp70 binding sites is directly proportional to protein size. Aggregation propensity upon release from the ribosome correlates with number of Hsp70 binding sites only in the case of large proteins. Interestingly, Hsp70 binding sites are more solvent‐exposed than other nonpolar sites, in protein native states. Our findings show that the majority ofE. coliproteins are systematically enabled to interact with Hsp70 even if this interaction only takes place during a fraction of the protein lifetime. In addition, our data suggest that some conformational sampling may take place within Hsp70‐bound states, due to the solvent exposure of some chaperone binding sites in native proteins. In all, we propose that Hsp70‐chaperone‐binding traits have evolved to favor Hsp70‐assisted protein folding devoid of aggregation.

    more » « less