skip to main content


Title: Dynamical instability in multi-orbiter systems with gas friction
ABSTRACT

Closely packed multiplanet systems are known to experience dynamical instability if the spacings between the planets are too small. Such instability can be tempered by the frictional forces acting on the planets from gaseous discs. A similar situation applies to stellar-mass black holes embedded in active galactic nuclei discs around supermassive black holes. We use N-body integrations to evaluate how the frictional damping of orbital eccentricity affects the growth of dynamical instability for a wide range of K (the difference in the planetary semimajor axes in units of the mutual Hill radius) and (unequal) planet masses. We find that, in general, the stable region (large K) and unstable region (small K) are separated by a “grey zone”, where the (in)stability is not guaranteed. We report the numerical values of the critical spacing for stability Kcrit and the “grey zone” range in different systems, and provide fitting formulae for arbitrary frictional forcing strength. We show that the stability of a system depends on the damping time-scale τ relative to the zero-friction instability growth time-scale tinst: two-planet systems are stable if tinst ≳ τ; three-planet systems require tinst ≳ 10τ−100τ. When K is sufficiently small, tinst can be less than the synodic period between the planets, which makes frictional stabilization unlikely to occur. As K increases, tinst tends to grow exponentially, but can also fluctuate by a few orders of magnitude. We also devise a linear map to analyse the dynamical instability of the “planet + test mass” system, and find qualitative agreement with N-body simulations.

 
more » « less
PAR ID:
10487289
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
528
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1198-1212
Size(s):
p. 1198-1212
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    To better understand the orbital dynamics of exoplanets around close binary stars, i.e., circumbinary planets (CBPs), we applied techniques from dynamical systems theory to a physically motivated set of solutions in the Circular Restricted Three-Body Problem (CR3BP). We applied Floquet theory to characterize the linear dynamical behavior—static, oscillatory, or exponential—surrounding planar circumbinary periodic trajectories (limit cycles). We computed prograde and retrograde limit cycles and analyzed their geometries, stability bifurcations, and dynamical structures. Orbit and stability calculations are exact computations in the CR3BP and reproducible through the open-source Python packagepyraa. The periodic trajectories (doi.org/10.5281/zenodo.7532982) produce a set of noncrossing, dynamically cool circumbinary orbits conducive to planetesimal growth. For mass ratiosμ∈ [0.01, 0.50], we found recurring features in the prograde families. These features include (1) an innermost near-circular trajectory, inside which solutions have resonant geometries, (2) an innermost stable trajectory (ac≈ 1.61 − 1.85abin) characterized by a tangent bifurcating limit cycle, and (3) a region of dynamical instability (a≈ 2.1abin; Δa≈ 0.1abin), the exclusion zone, bounded by a pair of critically stable trajectories bifurcating limit cycles. The exterior boundary of the exclusion zone is consistent with prior determinations ofacaround a circular binary. We validate our analytic results withN-body simulations and apply them to the Pluto–Charon system. The absence of detected CBPs in the inner stable region, between the prograde exclusion zone andac, suggests that the exclusion zone may inhibit the inward migration of CBPs.

     
    more » « less
  2. Uncovering the formation process that reproduces the distinct properties of compact super-Earth exoplanet systems is a major goal of planet formation theory. The most successful model argues that non-resonant systems begin as resonant chains of planets that later experience a dynamical instability. However, both the boundary of stability in resonant chains and the mechanism of the instability itself are poorly understood. Previous work postulated that a secondary resonance between the fastest libration frequency and a difference in synodic frequencies destabilizes the system. Here, we use that hypothesis to produce a simple and general criterion for resonant chain stability that depends only on planet orbital periods and masses. We show that the criterion accurately predicts the maximum mass of planets in synthetic resonant chains up to six planets. More complicated resonant chains produced in population synthesis simulations are found to be less stable than expected, although our criterion remains useful and superior to machine learning models. 
    more » « less
  3. Abstract Multiplanetary systems are prevalent in our Galaxy. The long-term stability of such systems may be disrupted if a distant inclined companion excites the eccentricity and inclination of the inner planets via the eccentric Kozai–Lidov mechanism. However, the star–planet and the planet–planet interactions can help stabilize the system. In this work, we extend the previous stability criterion that only considered the companion–planet and planet–planet interactions by also accounting for short-range forces or effects, specifically, relativistic precession induced by the host star. A general analytical stability criterion is developed for planetary systems with N inner planets and a relatively distant inclined perturber by comparing precession rates of relevant dynamical effects. Furthermore, we demonstrate as examples that in systems with two and three inner planets, the analytical criterion is consistent with numerical simulations using a combination of Gauss’s averaging method and direct N -body integration. Finally, the criterion is applied to observed systems, constraining the orbital parameter space of a possible undiscovered companion. This new stability criterion extends the parameter space in which an inclined companion of multiplanet systems can inhabit. 
    more » « less
  4. ABSTRACT

    While giant planet occurrence rates increase with stellar mass, occurrence rates of close-in super-Earths decrease. This is in contradiction to the expectation that the total mass of the planets in a system scale with the protoplanetary disc mass and hence the stellar mass. Since the snow line plays an important role in the planet formation process, we examine differences in the temperature structure of protoplanetary gas discs around stars of different mass. Protoplanetary discs likely contain a dead zone at the mid-plane that is sufficiently cold and dense for the magneto-rotational instability to be suppressed. As material builds up, the outer parts of the dead zone may be heated by self-gravity. The temperature in the disc can be below the snow line temperature far from the star and in the inner parts of a dead zone. The inner icy region has a larger radial extent around smaller mass stars. The increased mass of solid icy material may allow for the in situ formation of larger and more numerous planets close to a low-mass star. Super-Earths that form in the inner icy region may have a composition that includes a significant fraction of volatiles.

     
    more » « less
  5. Using high-resolution N-body simulations, we investigate the outcome of terrestrial planet formation at short (< 100 day) orbital periods under a migration-free model. The collisional and dynamical evolution of systems of nearly 106 self-interacting planetesimals are directly followed through the final planet assembly phase. This is done by first modeling the planetesimal evolution with the tree-based N-body code ChaNGa, and then passing the results to the hybrid-symplectic N-body code genga, once the particle count has dropped sufficiently. Previously, we showed that oligarchic growth fails to operate at arbitrarily short orbital periods. This leaves a distinct feature in the mass and orbital distribution of the planetary embryos. In this most recent work, we explore whether this boundary between oligarchic and non-oligarchic growth leaves any kind of imprint on the terrestrial planets that form. If so, this would provide an important clue to evaluate whether migration played a significant role in shaping the architecture systems of tightly-packed inner planets. 
    more » « less