skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Epitaxial fluorapatite vein in Northwest Africa 998 host apatite: Clues on the geochemistry of late hydrothermal fluids on Mars
Abstract Secondary minerals in martian nakhlites provide a powerful tool for investigating the nature, composition, and duration of aqueous activity in the martian crust. Northwest Africa (NWA) 998 crystallized early from the nakhlite magmatic source and has evidence of minimal signatures of the late hydrothermal alteration event that altered the nakhlites. Using FIB‐TEM techniques to study a cumulus apatite grain in NWA 998, we report the first evidence of a submicron‐scale vein consisting of fluorapatite and an SiO2‐rich phase. Fluorapatite grew epitaxially on the walls of an opened cleavage plane of host F‐bearing chlorapatite and the SiO2‐rich phase filled the center of the vein. The presence of nanoporosity and nanometer‐scale amorphous material and the sharp interface between the vein and the host apatite indicate the vein represents a coupled dissolution–reprecipitation process that generated apatite of a different composition that was more stable with the fluid. Using experimental data and diffusion coefficients of Cl in apatite from the literature, we conclude that the vein was caused by a low temperature (~300°C), slightly acidic, F‐, Si‐rich, aqueous fluid that acted as a closed system. Based on the characteristics of the vein (formation by rapid injection of fluid) and the fluid (composition, temperature, pH), and the lack of terrestrial weathering products in our SEM and TEM images, we infer that the vein is pre‐terrestrial in origin. Our observations support the hypothesis that the heat source triggering a hydrothermal system was a low‐shock velocity impact and rule out a magmatic origin. Finally, the vein could have formed from a late‐stage fluid different from that reported in other nakhlites, but formation during the same magmatic event by, for example, a less evolved fluid might also be plausible.  more » « less
Award ID(s):
1828731
PAR ID:
10487360
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Meteoritics & Planetary Science
Volume:
58
Issue:
9
ISSN:
1086-9379
Page Range / eLocation ID:
1229 to 1245
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The textures of outcrop and near-surface exposures of the massive magnetite orebodies (>90 vol % magnetite) at the Plio-Pleistocene El Laco iron oxide-apatite (IOA) deposit in northern Chile are similar to basaltic lava flows and have compositions that overlap high- and low-temperature hydrothermal magnetite. Existing models— liquid immiscibility and complete metasomatic replacement of andesitic lava flows—attempt to explain the genesis of the orebodies by entirely igneous or entirely hydrothermal processes. Importantly, those models were developed by studying only near-surface and outcrop samples. Here, we present the results of a comprehensive study of samples from outcrop and drill core that require a new model for the evolution of the El Laco ore deposit. Backscattered electron (BSE) imaging, electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to investigate the textural and compositional variability of magnetite and apatite from surface and drill core samples in order to obtain a holistic understanding of textures and compositions laterally and vertically through the orebodies. Magnetite was analyzed from 39 surface samples from five orebodies (Cristales Grandes, Rodados Negros, San Vicente Alto, Laco Norte, and Laco Sur) and 47 drill core samples from three orebodies (Laco Norte, Laco Sur, and Extensión Laco Sur). The geochemistry of apatite from eight surface samples from three orebodies (Cristales Grandes, Rodados Negros, and Laco Sur) was investigated. Minor and trace element compositions of magnetite in these samples are similar to magnetite from igneous rocks and magmatic-hydrothermal systems. Magnetite grains from deeper zones of the orebodies contain >1 wt % titanium, as well as ilmenite oxyexsolution lamellae and interstitial ilmenite. The ilmenite oxyexsolution lamellae, interstitial ilmenite, and igneous-like trace element concentrations in titanomagnetite from the deeper parts of the orebodies are consistent with original crystallization of titanomagnetite from silicate melt or high-temperature magmatic-hydrothermal fluid. The systematic decrease of trace element concentrations in magnetite from intermediate to shallow depths is consistent with progressive growth of magnetite from a cooling magmatic-hydrothermal fluid. Apatite grains from surface outcrops are F rich (typically >3 wt %) and have compositions that overlap igneous and magmatic-hydrothermal apatite. Magnetite and fluorapatite grains contain mineral inclusions (e.g., monazite and thorite) that evince syn- or postmineralization metasomatic alteration. Magnetite grains commonly meet at triple junctions, which preserve evidence for reequilibration of the ore minerals with hydrothermal fluid during or after mineralization. The data presented here are consistent with genesis of the El Laco orebodies via shallow emplacement and eruption of magnetite-bearing magmatic-hydrothermal fluid suspensions that were mobilized by decompression- induced collapse of the volcanic edifice. The ore-forming magnetite-fluid suspension would have rheological properties similar to basaltic lava flows, which explains the textures and presence of cavities and gas escape tubes in surface outcrops. 
    more » « less
  2. Abstract We report the occurrence of a previously unidentified mineral in lunar samples: a Cl-,F-,REE-rich silico-phosphate identified as Cl-bearing fluorcalciobritholite. This mineral is found in late-stage crystallization assemblages of slowly cooled high-Ti basalts 10044, 10047, 75035, and 75055. It occurs as rims on fluorapatite or as a solid-solution between fluorapatite and Cl-fluorcalciobritholite. The Cl-fluorcalciobritholite appears to be nominally anhydrous. The Cl and Fe2+ of the lunar Cl fluorcalciobritholite distinguishes it from its terrestrial analog. The textures and chemistry of the Clfluorcalciobritholite argue for growth during the last stages of igneous crystallization, rather than by later alteration/replacement by Cl-, REE-bearing metasomatic agents in the lunar crust. The igneous growth of this Cl- and F-bearing and OH-poor mineral after apatite in the samples we have studied suggests that the Lunar Apatite Paradox model (Boyce et al. 2014) may be inapplicable for high-Ti lunar magmas. This new volatile-bearing mineral has important potential as a geochemical tool for understanding Cl isotopes and REE chemistry of lunar samples. 
    more » « less
  3. Abstract The Au-rich polymetallic massive sulfide orebodies of the Kassandra mining district belong to the intrusion-related carbonate-hosted replacement deposit class. Marble lenses contained within the Stratoni fault zone host the Madem Lakkos and Mavres Petres deposits at the eastern end of the fault system, where paragenetically early skarn and massive sulfide are spatially associated with late Oligocene aplitic and porphyritic dikes. Skarn transitions into predominant massive and banded replacement sulfide bodies, which are overprinted by a younger assemblage of boulangerite-bearing, quartz-rich sulfide and late quartz-rhodochrosite vein breccias. The latter style of mineralization is most abundant at the Piavitsa prospect at the western end of the exposed fault system. The sulfide orebodies at the Olympias deposit are hosted by marble in association with the Kassandra fault, where textural and mineralogical similarities to the sulfide bodies within the Stratoni fault zone suggest a genetic relationship. Estimated trapping temperatures and pressures based on fluid inclusion data indicate that carbonate replacement mineralization took place at depths less than about 5.9 km. Carbon and oxygen isotope patterns in carbonate from the Stratoni fault zone support isotopic exchange principally through fluid–wall-rock interaction, whereas decarbonation and fluid-rock exchange reactions were important at the Olympias deposit. Carbonate minerals associated with skarn and replacement sulfide throughout the district have isotopic compositions that are consistent with formation from a hydrothermal fluid of magmatic origin. Lower homogenization temperatures and salinities in the younger quartz-rich sulfide assemblage and quartz-rhodochrosite vein breccias, together with low δ18O values of gangue carbonate, suggest dilution of a primary magmatic fluid with meteoric water late in the evolution of the hydrothermal system in both the Olympias area and the Stratoni fault zone. The replacement sulfide orebodies in the district likely inherited their uniform Pb isotope composition from a late Oligocene igneous source and the isotopically heterogeneous metamorphic basement units. Metal distribution patterns at the scale of the Stratoni fault zone show diminishing Cu concentration with decreasing Pb/Zn and Ag/Au ratios from Madem Lakkos to Mavres Petres and the Piavitsa prospect in the west. The sulfide orebodies at the Olympias deposit exhibit elevated Cu values in the east with increasing Pb/Zn and Ag/Au ratios down-plunge to the south-southwest. Metal concentration and ratios support zoning related to temperature and solubility changes with increasing distance from a probable magmatic source. Structural and igneous relationships, together with fluid inclusion microthermometric and carbon-oxygen isotope data and metal distribution patterns, are supportive of a zoned hydrothermal system that exceeded 12 km along the Stratoni fault zone, sourced by an igneous intrusion to the southeast of the Madem Lakkos deposit. The Olympias replacement sulfide orebodies, associated with the Kassandra fault, resulted from a local hydrothermal system that was likely derived from a concealed igneous intrusion to the east of the deposit. 
    more » « less
  4. null (Ed.)
    Magnetite is the most important iron ore in iron oxide-apatite (IOA) deposits which represent the Cu-poor endmember of the iron oxide-copper–gold (IOCG) clan. Magnetite chemistry has been used as a petrogenetic indicator to identify the geological environment of ore formation and as a fingerprint of the source reservoir of iron. In this study, we present new textural and microanalytical EPMA and LA-ICP-MS data of magnetite from Carmen, Fresia, Mariela and El Romeral IOA deposits located in the Cretaceous Coastal Cordillera of northern Chile. We also provide a comprehensive summary and discussion of magnetite geochemistry from Andean IOAs including Los Colorados, Cerro Negro Norte, El Romeral (Chilean Iron Belt) and the Pliocene El Laco IOA deposit located in the Central Volcanic Zone of the Chilean Andes. Microtextures coupled with geochemical data were used to define and characterize the occurrence of different magnetite types. Magnetite exhibits a variety of textural features including oscillatory zoning, colloform banding, re-equilibration textures, exsolution lamellae and symplectites. The magmatic vs. hydrothermal origin of the different magnetite types and the evolution of IOA deposits can be assessed using diagrams based on compatible trace elements. However, magnetite is very susceptible to hydrothermal alteration and to both textural and compositional re-equilibration during magmatic and superimposed hydrothermal events. Based on the data presented here, we conclude that V and Ga are possibly the most reliable compatible elements in magnetite to trace ore-forming processes in the Andean IOA deposits. Magnetite chemistry reveals different conditions/events of formation for each IOA deposit ranging from high-temperature, low-oxygen fugacity (ƒO2), purely magmatic (> 600 °C) conditions; to lower temperature and higher ƒO2 magmatic-hydrothermal (300–600 °C) to low-temperature hydrothermal (< 200–300 °C) conditions. Specifically, a continuous transition from high-temperature, low- ƒO2 conditions in the deepest portions of the deposits to low-temperature, relatively higher ƒO2 conditions towards surface are described for magnetite from El Laco. The new and compiled magnetite data from IOA deposits from the Chilean Iron Belt and El Laco are consistent with a transition from magmatic to hydrothermal conditions. The flotation model plausibly explains such features, which result from the crystallization of magnetite microlites from a silicate melt, nucleation and coalescence of aqueous fluid bubbles on magnetite surfaces, followed by ascent of a fluid-magnetite suspension along reactivated transtensional faults or through fissures formed during the collapse of the volcanic structure (El Laco). The decompression of the coalesced fluid-magnetite aggregates during ascent promotes the continued growth of magnetite microlites from the Fe-rich magmatic-hydrothermal fluid. As with any general genetic model, the flotation model allows variation and the definition of different styles or subtypes of IOA mineralization. The deeper, intrusive-like Los Colorados deposit shows contrasting features when compared with the Cerro Negro Norte hydrothermal type, the pegmatitic apatite-rich deposits of Carmen, Fresia and Mariela, and the shallow, subaerial deposits of El Laco. These apparent differences depend fundamentally on the depth of formation, the presence of structures and faults that trigger decompression, the composition of the host rocks, and the source and flux rate of hydrothermal fluids. 
    more » « less
  5. Kelemen, Peter (Ed.)
    Most of the geologic CO2entering Earth’s atmosphere and oceans is emitted along plate margins. While C-cycling at mid-ocean ridges and subduction zones has been studied for decades, little attention has been paid to degassing of magmatic CO2and mineral carbonation of mantle rocks in oceanic transform faults. We studied the formation of soapstone (magnesite–talc rock) and other magnesite-bearing assemblages during mineral carbonation of mantle peridotite in the St. Paul’s transform fault, equatorial Atlantic. Clumped carbonate thermometry of soapstone yields a formation (or equilibration) temperature of 147 ± 13 °C which, based on thermodynamic constraints, suggests that CO2(aq)concentrations of the hydrothermal fluid were at least an order of magnitude higher than in seawater. The association of magnesite with apatite in veins, magnesite with a δ13C of −3.40 ± 0.04‰, and the enrichment of CO2in hydrothermal fluids point to magmatic degassing and melt-impregnation as the main source of CO2. Melt-rock interaction related to gas-rich alkali olivine basalt volcanism near the St. Paul’s Rocks archipelago is manifested in systematic changes in peridotite compositions, notably a strong enrichment in incompatible elements with decreasing MgO/SiO2. These findings reveal a previously undocumented aspect of the geologic carbon cycle in one of the largest oceanic transform faults: Fueled by magmatism in or below the root zone of the transform fault and subsequent degassing, the fault constitutes a conduit for CO2-rich hydrothermal fluids, while carbonation of peridotite represents a vast sink for the emitted CO2
    more » « less