The sulfur isotope budget of Martian regolith breccia (NWA 7533) has been addressed from conventional fluorination bulk rock analyses and ion microprobe in situ analyses. The bulk rock analyses yield 865 ± 50 ppm S in agreement with LA‐ICP‐MS analyses. These new data support previous estimates of 80% S loss resulting from terrestrial weathering of NWA 7533 pyrite. Pyrite is by far the major S host. Apatite and Fe oxyhydroxides are negligible S carriers, as are the few tiny igneous pyrrhotite–pentlandite sulfide grains included in lithic clasts so far identified. A small nonzero Δ33S (−0.029 ± 0.010‰) signal is clearly resolved at the 2σ level in the bulk rock analyses, coupled with negative CDT‐normalized δ34S (−2.54 ± 0.10‰), and near‐zero Δ36S (0.002 ± 0.09‰). In situ analyses also yield negative Δ33S values (−0.05 to −0.30‰) with only a few positive Δ33S up to +0.38‰. The slight discrepancy compared to the bulk rock results is attributed to a possible sampling bias. The occurrence of mass‐independent fractionation (MIF) supports a model of NWA 7533 pyrite formation from surface sulfur that experienced photochemical reaction(s). The driving force that recycled crustal S in NWA 7533 lithologies—magmatic intrusions or impact‐induced heat—is presently unclear. However, in situ analyses also gave negative δ34S values (+1 to −5.8‰). Such negative values in the hydrothermal setting of NWA 7533 are reflective of hydrothermal sulfides precipitated from H2S/HS‐aqueous fluid produced via open‐system thermochemical reduction of sulfates at high temperatures (>300 °C).
Secondary minerals in martian nakhlites provide a powerful tool for investigating the nature, composition, and duration of aqueous activity in the martian crust. Northwest Africa (NWA) 998 crystallized early from the nakhlite magmatic source and has evidence of minimal signatures of the late hydrothermal alteration event that altered the nakhlites. Using FIB‐TEM techniques to study a cumulus apatite grain in NWA 998, we report the first evidence of a submicron‐scale vein consisting of fluorapatite and an SiO2‐rich phase. Fluorapatite grew epitaxially on the walls of an opened cleavage plane of host F‐bearing chlorapatite and the SiO2‐rich phase filled the center of the vein. The presence of nanoporosity and nanometer‐scale amorphous material and the sharp interface between the vein and the host apatite indicate the vein represents a coupled dissolution–reprecipitation process that generated apatite of a different composition that was more stable with the fluid. Using experimental data and diffusion coefficients of Cl in apatite from the literature, we conclude that the vein was caused by a low temperature (~300°C), slightly acidic, F‐, Si‐rich, aqueous fluid that acted as a closed system. Based on the characteristics of the vein (formation by rapid injection of fluid) and the fluid (composition, temperature, pH), and the lack of terrestrial weathering products in our SEM and TEM images, we infer that the vein is pre‐terrestrial in origin. Our observations support the hypothesis that the heat source triggering a hydrothermal system was a low‐shock velocity impact and rule out a magmatic origin. Finally, the vein could have formed from a late‐stage fluid different from that reported in other nakhlites, but formation during the same magmatic event by, for example, a less evolved fluid might also be plausible.
more » « less- Award ID(s):
- 1828731
- PAR ID:
- 10487360
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Meteoritics & Planetary Science
- Volume:
- 58
- Issue:
- 9
- ISSN:
- 1086-9379
- Page Range / eLocation ID:
- 1229 to 1245
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Hydrous alteration of olivine macrocrysts in a Martian olivine phyric basalt, NWA 10416, and a terrestrial basalt from southern Colorado are examined using SEM, EPMA, TEM, and µXRD techniques. The olivines in the meteorite contain linear nanotubes of hydrous material, amorphous areas, and fluid dissolution textures quite distinct from alteration identified in other Martian meteorites. Instead, they bear resemblance to terrestrial deuteric alteration features. The presence of the hydrous alteration phase Mg‐laihunite within the olivines has been confirmed by µXRD analysis. The cores of the olivines in both Martian and terrestrial samples are overgrown by unaltered rims whose compositions match those of a separate population of groundmass olivines, suggesting that the core olivines are xenocrysts whose alteration preceded crystallization of the groundmass. The terrestrial sample is linked to deep crustal metasomatism and the “ignimbrite flare‐up” of the Oligocene epoch. The comparison of the two samples suggests the existence of an analogous relatively water‐rich magmatic reservoir on Mars.
-
null (Ed.)The textures of outcrop and near-surface exposures of the massive magnetite orebodies (>90 vol % magnetite) at the Plio-Pleistocene El Laco iron oxide-apatite (IOA) deposit in northern Chile are similar to basaltic lava flows and have compositions that overlap high- and low-temperature hydrothermal magnetite. Existing models— liquid immiscibility and complete metasomatic replacement of andesitic lava flows—attempt to explain the genesis of the orebodies by entirely igneous or entirely hydrothermal processes. Importantly, those models were developed by studying only near-surface and outcrop samples. Here, we present the results of a comprehensive study of samples from outcrop and drill core that require a new model for the evolution of the El Laco ore deposit. Backscattered electron (BSE) imaging, electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to investigate the textural and compositional variability of magnetite and apatite from surface and drill core samples in order to obtain a holistic understanding of textures and compositions laterally and vertically through the orebodies. Magnetite was analyzed from 39 surface samples from five orebodies (Cristales Grandes, Rodados Negros, San Vicente Alto, Laco Norte, and Laco Sur) and 47 drill core samples from three orebodies (Laco Norte, Laco Sur, and Extensión Laco Sur). The geochemistry of apatite from eight surface samples from three orebodies (Cristales Grandes, Rodados Negros, and Laco Sur) was investigated. Minor and trace element compositions of magnetite in these samples are similar to magnetite from igneous rocks and magmatic-hydrothermal systems. Magnetite grains from deeper zones of the orebodies contain >1 wt % titanium, as well as ilmenite oxyexsolution lamellae and interstitial ilmenite. The ilmenite oxyexsolution lamellae, interstitial ilmenite, and igneous-like trace element concentrations in titanomagnetite from the deeper parts of the orebodies are consistent with original crystallization of titanomagnetite from silicate melt or high-temperature magmatic-hydrothermal fluid. The systematic decrease of trace element concentrations in magnetite from intermediate to shallow depths is consistent with progressive growth of magnetite from a cooling magmatic-hydrothermal fluid. Apatite grains from surface outcrops are F rich (typically >3 wt %) and have compositions that overlap igneous and magmatic-hydrothermal apatite. Magnetite and fluorapatite grains contain mineral inclusions (e.g., monazite and thorite) that evince syn- or postmineralization metasomatic alteration. Magnetite grains commonly meet at triple junctions, which preserve evidence for reequilibration of the ore minerals with hydrothermal fluid during or after mineralization. The data presented here are consistent with genesis of the El Laco orebodies via shallow emplacement and eruption of magnetite-bearing magmatic-hydrothermal fluid suspensions that were mobilized by decompression- induced collapse of the volcanic edifice. The ore-forming magnetite-fluid suspension would have rheological properties similar to basaltic lava flows, which explains the textures and presence of cavities and gas escape tubes in surface outcrops.more » « less
-
Abstract We report the occurrence of a previously unidentified mineral in lunar samples: a Cl-,F-,REE-rich silico-phosphate identified as Cl-bearing fluorcalciobritholite. This mineral is found in late-stage crystallization assemblages of slowly cooled high-Ti basalts 10044, 10047, 75035, and 75055. It occurs as rims on fluorapatite or as a solid-solution between fluorapatite and Cl-fluorcalciobritholite. The Cl-fluorcalciobritholite appears to be nominally anhydrous. The Cl and Fe2+ of the lunar Cl fluorcalciobritholite distinguishes it from its terrestrial analog. The textures and chemistry of the Clfluorcalciobritholite argue for growth during the last stages of igneous crystallization, rather than by later alteration/replacement by Cl-, REE-bearing metasomatic agents in the lunar crust. The igneous growth of this Cl- and F-bearing and OH-poor mineral after apatite in the samples we have studied suggests that the Lunar Apatite Paradox model (Boyce et al. 2014) may be inapplicable for high-Ti lunar magmas. This new volatile-bearing mineral has important potential as a geochemical tool for understanding Cl isotopes and REE chemistry of lunar samples.more » « less
-
Abstract The Au-rich polymetallic massive sulfide orebodies of the Kassandra mining district belong to the intrusion-related carbonate-hosted replacement deposit class. Marble lenses contained within the Stratoni fault zone host the Madem Lakkos and Mavres Petres deposits at the eastern end of the fault system, where paragenetically early skarn and massive sulfide are spatially associated with late Oligocene aplitic and porphyritic dikes. Skarn transitions into predominant massive and banded replacement sulfide bodies, which are overprinted by a younger assemblage of boulangerite-bearing, quartz-rich sulfide and late quartz-rhodochrosite vein breccias. The latter style of mineralization is most abundant at the Piavitsa prospect at the western end of the exposed fault system. The sulfide orebodies at the Olympias deposit are hosted by marble in association with the Kassandra fault, where textural and mineralogical similarities to the sulfide bodies within the Stratoni fault zone suggest a genetic relationship. Estimated trapping temperatures and pressures based on fluid inclusion data indicate that carbonate replacement mineralization took place at depths less than about 5.9 km. Carbon and oxygen isotope patterns in carbonate from the Stratoni fault zone support isotopic exchange principally through fluid–wall-rock interaction, whereas decarbonation and fluid-rock exchange reactions were important at the Olympias deposit. Carbonate minerals associated with skarn and replacement sulfide throughout the district have isotopic compositions that are consistent with formation from a hydrothermal fluid of magmatic origin. Lower homogenization temperatures and salinities in the younger quartz-rich sulfide assemblage and quartz-rhodochrosite vein breccias, together with low δ18O values of gangue carbonate, suggest dilution of a primary magmatic fluid with meteoric water late in the evolution of the hydrothermal system in both the Olympias area and the Stratoni fault zone. The replacement sulfide orebodies in the district likely inherited their uniform Pb isotope composition from a late Oligocene igneous source and the isotopically heterogeneous metamorphic basement units. Metal distribution patterns at the scale of the Stratoni fault zone show diminishing Cu concentration with decreasing Pb/Zn and Ag/Au ratios from Madem Lakkos to Mavres Petres and the Piavitsa prospect in the west. The sulfide orebodies at the Olympias deposit exhibit elevated Cu values in the east with increasing Pb/Zn and Ag/Au ratios down-plunge to the south-southwest. Metal concentration and ratios support zoning related to temperature and solubility changes with increasing distance from a probable magmatic source. Structural and igneous relationships, together with fluid inclusion microthermometric and carbon-oxygen isotope data and metal distribution patterns, are supportive of a zoned hydrothermal system that exceeded 12 km along the Stratoni fault zone, sourced by an igneous intrusion to the southeast of the Madem Lakkos deposit. The Olympias replacement sulfide orebodies, associated with the Kassandra fault, resulted from a local hydrothermal system that was likely derived from a concealed igneous intrusion to the east of the deposit.more » « less