skip to main content


Title: Comparison of triple quantum (TQ) TPPI and inversion recovery TQ TPPI pulse sequences at 9.4 and 21.1 T
Purpose

Both sodiumT1triple quantum (TQ) signal andT1relaxation pathways have a unique sensitivity to the sodium molecular environment. In this study an inversion recovery time proportional phase increment (IRTQTPPI) pulse sequence was investigated for simultaneous and reliable quantification of sodium TQ signal and bi‐exponentialT1relaxation times.

Methods

The IRTQTPPI sequence combines inversion recovery TQ filtering and time proportional phase increment. The reliable and reproducible results were achieved by the pulse sequence optimized in three ways: (1) optimization of the nonlinear fit for the determination of bothT1‐TQ signal andT1relaxation times; (2) suppression of unwanted signals by assessment of four different phase cycles; (3) nonlinear sampling during evolution time for optimal scan time without any compromises in fit accuracy. The relaxation timesT1andT2and the TQ signals from IRTQTPPI and TQTPPI were compared between 9.4 and 21.1 T. The motional environment of the sodium nuclei was evaluated by calculation of correlation times and nuclear quadrupole interaction strengths.

Results

Reliable measurements of theT1‐TQ signals andT1bi‐exponential relaxation times were demonstrated. The fit parameters for all four phase cycles were in good agreement with one another, with a negligible influence of unwanted signals. The agar samples yielded normalizedT1‐TQ signals from 3% to 16% relative to single quantum (SQ) signals at magnetic fields of both 9.4 and 21.1 T. In comparison, the normalizedT2‐TQ signal was in the range 15%–35%. The TQ/SQ signal ratio was decreased at 21.1 T as compared with 9.4 T for bothT1andT2relaxation pathways. The bi‐exponentialT1relaxation time separation ranged from 15 to 18 ms at 9.4 T and 15 to 21 ms at 21.1 T. TheT2relaxation time separation was larger, ranging from 28 to 35 ms at 9.4 T and 37 to 40 ms at 21.1 T.

Conclusion

The IRTQTPPI sequence, while providing a less intensive TQ signal than TQTPPI, allows a simultaneous and reliable quantification of both theT1‐TQ signal andT1relaxation times. The unique sensitivities of theT1andT2relaxation pathways to different types of molecular motion provide a deeper understanding of the sodium MR environment.

 
more » « less
NSF-PAR ID:
10487383
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
NMR in Biomedicine
ISSN:
0952-3480
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The aim of this study was to investigate possible sodium triple‐quantum (TQ) signal dependence on pH variation and protein unfolding which may happenin vivo.The model system, composed of bovine serum albumin (BSA), was investigated over a wide pH range of 0.70 to 13.05 and during urea‐induced unfolding. In both experimental series, the sodium and BSA concentration were kept constant so that TQ signal changes solely arose from an environmental change. The experiments were performed using unique potential to detect weak TQ signals by implementing a TQ time proportional phase increment pulse sequence. At a pH of 0.70, in which case the effect of the negatively charged groups was minimized, the minimum TQ percentage relative to single‐quantum of 1.34% ± 0.05% was found. An increase of the pH up to 13.05 resulted in an increase of the sodium TQ signal by 225%. Urea‐induced unfolding of BSA, without changes in pH, led to a smaller increase in the sodium TQ signal of up to 40%. The state of BSA unfolding was verified by fluorescence microscopy. Results of both experiments were well fitted by sigmoid functions. Both TQ signal increases were in agreement with an increase of the availability of negatively charged groups. The results point to vital contributions of the biochemical environment to the TQ MR signals. The sodium TQ signalin vivocould be a valuable biomarker of cell viability, and therefore possible effects of pH and protein unfolding need to be considered for a proper interpretation of changes in sodium TQ signals.

     
    more » « less
  2. This study introduces a technique called cine magnetic resonance fingerprinting (cine‐MRF) for simultaneous T1, T2and ejection fraction (EF) quantification. Data acquired with a free‐running MRF sequence are retrospectively sorted into different cardiac phases using an external electrocardiogram (ECG) signal. A low‐rank reconstruction with a finite difference sparsity constraint along the cardiac motion dimension yields images resolved by cardiac phase. To improve SNR and precision in the parameter maps, these images are nonrigidly registered to the same phase and matched to a dictionary to generate T1and T2maps. Cine images for computing left ventricular volumes and EF are also derived from the same data. Cine‐MRF was tested in simulations using a numerical relaxation phantom. Phantom and in vivo scans of 19 subjects were performed at 3 T during a 10.9 seconds breath‐hold with an in‐plane resolution of 1.6 x 1.6 mm2and 24 cardiac phases. Left ventricular EF values obtained with cine‐MRF agreed with the conventional cine images (mean bias −1.0%). Average myocardial T1times in diastole/systole were 1398/1391 ms with cine‐MRF, 1394/1378 ms with ECG‐triggered cardiac MRF (cMRF) and 1234/1212 ms with MOLLI; and T2values were 30.7/30.3 ms with cine‐MRF, 32.6/32.9 ms with ECG‐triggered cMRF and 37.6/41.0 ms with T2‐prepared FLASH. Cine‐MRF and ECG‐triggered cMRF relaxation times were in good agreement. Cine‐MRF T1values were significantly longer than MOLLI, and cine‐MRF T2values were significantly shorter than T2‐prepared FLASH. In summary, cine‐MRF can potentially streamline cardiac MRI exams by combining left ventricle functional assessment and T1‐T2mapping into one time‐efficient acquisition.

     
    more » « less
  3. Abstract Purpose

    One standard method, proton resonance frequency shift, for measuring temperature using magnetic resonance imaging (MRI), in MRI‐guided surgeries, fails completely below the freezing point of water. Because of this, we have developed a new methodology for monitoring temperature with MRI below freezing. The purpose of this paper is to show that a strong temperature dependence of the nuclear relaxation timeT1in soft silicone polymers can lead to temperature‐dependent changes of MRI intensity acquired withT1weighting. We propose the use of silicone filaments inserted in tissue for measuring temperature during MRI‐guided cryoablations.

    Methods

    The temperature dependence ofT1in bio‐compatible soft silicone polymers was measured using nuclear magnetic resonance spectroscopy and MRI. Phantoms, made of bulk silicone materials and put in an MRI‐compatible thermal container with dry ice, allowed temperature measurements ranging from –60°C to + 20°C.T1‐weighted gradient echo images of the phantoms were acquired at spatially uniform temperatures and with a gradient in temperature to determine the efficacy of using these materials as temperature indicators in MRI. Ex vivo experiments on silicone rods, 4 mm in diameter, inserted in animal tissue were conducted to assess the practical feasibility of the method.

    Results

    Measurements of nuclear relaxation times of protons in soft silicone polymers show a monotonic, nearly linear, change with temperature (R2 > 0.98) and have a significant correlation with temperature (Pearson'sr > 0.99,p < 0.01). Similarly, the intensity of the MR images in these materials, taken with a gradient echo sequence, are also temperature dependent. There is again a monotonic change in MRI intensity that correlates well with the measured temperature (Pearson'sr < ‐0.98 andp < 0.01). The MRI experiments show that a temperature change of 3°C can be resolved in a distance of about 2.5 mm. Based on MRI images and external sensor calibrations for a sample with a gradient in temperature, temperature maps with 3°C isotherms are created for a bulk phantom. Experiments demonstrate that these changes in MRI intensity with temperature can also be seen in 4 mm silicone rods embedded in ex vivo animal tissue.

    Conclusions

    We have developed a new method for measuring temperature in MRI that potentially could be used during MRI‐guided cryoablation operations, reducing both procedure time and cost, and making these surgeries safer.

     
    more » « less
  4. Purpose

    To provide 3D real‐time MRI of speech production with improved spatio‐temporal sharpness using randomized, variable‐density, stack‐of‐spiral sampling combined with a 3D spatio‐temporally constrained reconstruction.

    Methods

    We evaluated five candidate (k,t) sampling strategies using a previously proposed gradient‐echo stack‐of‐spiral sequence and a 3D constrained reconstruction with spatial and temporal penalties. Regularization parameters were chosen by expert readers based on qualitative assessment. We experimentally determined the effect of spiral angle increment andkztemporal order. The strategy yielding highest image quality was chosen as the proposed method. We evaluated the proposed and original 3D real‐time MRI methods in 2 healthy subjects performing speech production tasks that invoke rapid movements of articulators seen in multiple planes, using interleaved 2D real‐time MRI as the reference. We quantitatively evaluated tongue boundary sharpness in three locations at two speech rates.

    Results

    The proposed data‐sampling scheme uses a golden‐angle spiral increment in thekxkyplane and variable‐density, randomized encoding alongkz. It provided a statistically significant improvement in tongue boundary sharpness score (P < .001) in the blade, body, and root of the tongue during normal and 1.5‐times speeded speech. Qualitative improvements were substantial during natural speech tasks of alternating high, low tongue postures during vowels. The proposed method was also able to capture complex tongue shapes during fast alveolar consonant segments. Furthermore, the proposed scheme allows flexible retrospective selection of temporal resolution.

    Conclusion

    We have demonstrated improved 3D real‐time MRI of speech production using randomized, variable‐density, stack‐of‐spiral sampling with a 3D spatio‐temporally constrained reconstruction.

     
    more » « less
  5. Purpose

    To develop and evaluate a cardiac phase‐resolved myocardial T1mapping sequence.

    Methods

    The proposed method for temporally resolved parametric assessment of Z‐magnetization recovery (TOPAZ) is based on contiguous fast low‐angle shot imaging readout after magnetization inversion from the pulsed steady state. Thereby, segmented k‐space data are acquired over multiple heartbeats, before reaching steady state. This results in sampling of the inversion‐recovery curve for each heart phase at multiple points separated by an R‐R interval. Joint T1andestimation is performed for reconstruction of cardiac phase‐resolved T1andmaps. Sequence parameters are optimized using numerical simulations. Phantom and in vivo imaging are performed to compare the proposed sequence to a spin‐echo reference and saturation pulse prepared heart rate–independent inversion‐recovery (SAPPHIRE) T1mapping sequence in terms of accuracy and precision.

    Results

    In phantom, TOPAZ T1values with integratedcorrection are in good agreement with spin‐echo T1values (normalized root mean square error = 4.2%) and consistent across the cardiac cycle (coefficient of variation = 1.4 ± 0.78%) and different heart rates (coefficient of variation = 1.2 ± 1.9%). In vivo imaging shows no significant difference in TOPAZ T1times between the cardiac phases (analysis of variance:P = 0.14, coefficient of variation = 3.2 ± 0.8%), but underestimation compared with SAPPHIRE (T1time ± precision: 1431 ± 56 ms versus 1569 ± 65 ms). In vivo precision is comparable to SAPPHIRE T1mapping until middiastole (P > 0.07), but deteriorates in the later phases.

    Conclusions

    The proposed sequence allows cardiac phase‐resolved T1mapping with integratedassessment at a temporal resolution of 40 ms. Magn Reson Med 79:2087–2100, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

     
    more » « less