skip to main content


Title: Mitogenomic analysis of a late Pleistocene jaguar from North America
Abstract

The jaguar (Panthera onca) is the largest living cat species native to the Americas and one of few large American carnivorans to have survived into the Holocene. However, the extent to which jaguar diversity declined during the end-Pleistocene extinction event remains unclear. For example, Pleistocene jaguar fossils from North America are notably larger than the average extant jaguar, leading to hypotheses that jaguars from this continent represent a now-extinct subspecies (Panthera onca augusta) or species (Panthera augusta). Here, we used a hybridization capture approach to recover an ancient mitochondrial genome from a large, late Pleistocene jaguar from Kingston Saltpeter Cave, Georgia, United States, which we sequenced to 26-fold coverage. We then estimated the evolutionary relationship between the ancient jaguar mitogenome and those from other extinct and living large felids, including multiple jaguars sampled across the species’ current range. The ancient mitogenome falls within the diversity of living jaguars. All sampled jaguar mitogenomes share a common mitochondrial ancestor ~400 thousand years ago, indicating that the lineage represented by the ancient specimen dispersed into North America from the south at least once during the late Pleistocene. While genomic data from additional and older specimens will continue to improve understanding of Pleistocene jaguar diversity in the Americas, our results suggest that this specimen falls within the variation of extant jaguars despite the relatively larger size and geographic location and does not represent a distinct taxon.

 
more » « less
NSF-PAR ID:
10487394
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Heredity
ISSN:
0022-1503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Bering Land Bridge connecting North America and Eurasia was periodically exposed and inundated by oscillating sea levels during the Pleistocene glacial cycles. This land connection allowed the intermittent dispersal of animals, including humans, between Western Beringia (far northeast Asia) and Eastern Beringia (northwest North America), changing the faunal community composition of both continents. The Pleistocene glacial cycles also had profound impacts on temperature, precipitation and vegetation, impacting faunal community structure and demography. While these palaeoenvironmental impacts have been studied in many large herbivores from Beringia (e.g., bison, mammoths, horses), the Pleistocene population dynamics of the diverse guild of carnivorans present in the region are less well understood, due to their lower abundances. In this study, we analyse mitochondrial genome data from ancient brown bears (Ursus arctos;n = 103) and lions (Pantheraspp.;n = 39), two megafaunal carnivorans that dispersed into North America during the Pleistocene. Our results reveal striking synchronicity in the population dynamics of Beringian lions and brown bears, with multiple waves of dispersal across the Bering Land Bridge coinciding with glacial periods of low sea levels, as well as synchronous local extinctions in Eastern Beringia during Marine Isotope Stage 3. The evolutionary histories of these two taxa underline the crucial biogeographical role of the Bering Land Bridge in the distribution, turnover and maintenance of megafaunal populations in North America.

     
    more » « less
  2. Abstract

    The cephalopod genusNautilusis considered a “living fossil” with a contested number of extant and extinct species, and a benthic lifestyle that limits movement of animals between isolated seamounts and landmasses in the Indo‐Pacific. Nautiluses are fished for their shells, most heavily in the Philippines, and these fisheries have little monitoring or regulation. Here, we evaluate the hypothesis that multiple species ofNautilus(e.g.,N. belauensis,N. repertusandN. stenomphalus) are in fact one species with a diverse phenotypic and geologic range. Using mitochondrial markers, we show that nautiluses from the Philippines, eastern Australia (Great Barrier Reef), Vanuatu, American Samoa, and Fiji fall into distinct geographical clades. For phylogenetic analysis of species complexes across the range of nautilus, we included sequences ofNautilus pompiliusand otherNautilusspecies from GenBank from localities sampled in this study and others. We found that specimens from Western Australia cluster with samples from the Philippines, suggesting that interbreeding may be occurring between those locations, or that there is limited genetic drift due to large effective population sizes. Intriguingly, our data also show that nautilus identified in other studies asN. belauensis,N. stenomphalus, orN. repertusare likelyN. pompiliusdisplaying a diversity of morphological characters, suggesting that there is significant phenotypic plasticity withinN. pompilius.

     
    more » « less
  3. Abstract

    Establishment of extant terrestrial vertebrate faunas in North America was influenced by a set of factors associated with temporal changes in climate and ecology that operated at different geographic scales. While the biogeography of extant taxa can be inferred from phylogenies, these omit lineages that have gone regionally extinct and for which the only direct evidence is the fossil record. A comprehensive study of anurans from the Late Oligocene of Florida reveals an abundance of fossils referred to Eleutherodactylus. Time-calibrated molecular phylogenies have suggested that this genus originated in the Caribbean in the Early Oligocene and then colonized Central America in the Middle Miocene. Here, we describe the first records of pre-Quaternary fossils referred to Eleutherodactylus from Florida. Results from analysis of inter- and intraspecific variation in anatomy, size, and shape of isolated bones of fossil and extant species suggest that the fossils represent adult individuals with an estimated body size (snout–urostyle length) of 16.8–29.8 mm. We show that Eleutherodactylus was established by the Late Oligocene in North America well before colonizing Central America in the Miocene. We provide, for the first time, evidence of dispersal of amphibians from the Caribbean into North America during the Late Oligocene.

     
    more » « less
  4. Abstract

    Pleistocene diversity was much higher than today, for example there were three distinct wolf morphotypes (dire, gray, Beringian) in North America versus one today (gray). Previous fossil evidence suggested that these three groups overlapped ecologically, but split the landscape geographically. The Natural Trap Cave (NTC) fossil site in Wyoming,USAis an ideally placed late Pleistocene site to study the geographical movement of species from northern to middle North America before, during, and after the last glacial maximum. Until now, it has been unclear what type of wolf was present atNTC. We analyzed morphometrics of three wolf groups (dire, extant North American gray, Alaskan Beringian) to determine which wolves were present atNTCand what this indicates about wolf diversity and migration in Pleistocene North America. Results showNTCwolves group with Alaskan Beringian wolves. This provides the first morphological evidence for Beringian wolves in mid‐continental North America. Their location atNTCand their radiocarbon ages suggest that they followed a temporary channel through the glaciers. Results suggest high levels of competition and diversity in Pleistocene North American wolves. The presence of mid‐continental Beringian morphotypes adds important data for untangling the history of immigration and evolution ofCanisin North America.

     
    more » « less
  5. Abstract

    During the Late Pleistocene, major parts of North America were periodically covered by ice sheets. However, there are still questions about whether ice‐free refugia were present in the Alexander Archipelago along the Southeast (SE) Alaska coast during the last glacial maximum (LGM). Numerous subfossils have been recovered from caves in SE Alaska, including American black (Ursus americanus) and brown (U. arctos) bears, which today are found in the Alexander Archipelago but are genetically distinct from mainland bear populations. Hence, these bear species offer an ideal system to investigate long‐term occupation, potential refugial survival and lineage turnover. Here, we present genetic analyses based on 99 new complete mitochondrial genomes from ancient and modern brown and black bears spanning the last ~45,000 years. Black bears form two SE Alaskan subclades, one preglacial and another postglacial, that diverged >100,000 years ago. All postglacial ancient brown bears are closely related to modern brown bears in the archipelago, while a single preglacial brown bear is found in a distantly related clade. A hiatus in the bear subfossil record around the LGM and the deep split of their pre‐ and postglacial subclades fail to support a hypothesis of continuous occupancy in SE Alaska throughout the LGM for either species. Our results are consistent with an absence of refugia along the SE Alaska coast, but indicate that vegetation quickly expanded after deglaciation, allowing bears to recolonize the area after a short‐lived LGM peak.

     
    more » « less