skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oxalate and oxalotrophy: an environmental perspective
Abstract Oxalic acid is one of the most abundant organic acids produced by plants. Much of the global production of oxalic acid is deposited on soil surfaces in leaf litter to be oxidized by microorganisms, resulting in a pH increase and shifting the carbonate equilibria. In what is known as the oxalate-carbonate pathway, calcium oxalate metabolism results in CO2 being sequestered into soils as insoluble calcite (CaCO3). There is a growing appreciation that the global scale of this process is sufficiently large to be an important contribution to global carbon turnover budgets. The microbiomics, genetics, and enzymology of oxalotrophy are all soundly established, although a more detailed understanding of the landscape-scale kinetics of the process would be needed to incorporate oxalotrophy as an element of process models informing the relevant Sustainable Development Goals. Here, we review the current state of knowledge of oxalotrophs and oxalotrophy and the role they play in terrestrial ecosystem services and functions in terms of carbon sequestration and nutrient cycling. We emphasize the relevance of these to the Sustainability Development Goals (SDGs) and highlight the importance of recognizing oxalotrophy, when accounting for the natural capital value of an ecosystem.  more » « less
Award ID(s):
2224994 2224993
PAR ID:
10487416
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Sustainable Microbiology
Volume:
1
Issue:
1
ISSN:
2755-1970
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Oxalate decarboxylase fromBacillus subtilisis a binuclear Mn‐dependent acid stress response enzyme that converts the mono‐anion of oxalic acid into formate and carbon dioxide in a redox neutral unimolecular disproportionation reaction. A π‐stacked tryptophan dimer, W96 and W274, at the interface between two monomer subunits facilitates long‐range electron transfer between the two Mn ions and plays an important role in the catalytic mechanism. Substitution of W96 with the unnatural amino acid 5‐hydroxytryptophan leads to a persistent EPR signal which can be traced back to the neutral radical of 5‐hydroxytryptophan with its hydroxyl proton removed. 5‐Hydroxytryptophan acts as a hole sink preventing the formation of Mn(III) at the N‐terminal active site and strongly suppresses enzymatic activity. The lower boundary of the standard reduction potential for the active site Mn(II)/Mn(III) couple can therefore be estimated as 740 mV against the normal hydrogen electrode at pH 4, the pH of maximum catalytic efficiency. Our results support the catalytic importance of long‐range electron transfer in oxalate decarboxylase while at the same time highlighting the utility of unnatural amino acid incorporation and specifically the use of 5‐hydroxytryptophan as an energetic sink for hole hopping to probe electron transfer in redox proteins. 
    more » « less
  2. Organic compounds in the atmosphere play a pivotal role in atmospheric chemistry, and clouds are significant in the genesis and alteration of these compounds. Di-carboxylic organic anions such as oxalate serve as tracers for aqueous processing. This poster details our findings from summer measurements of three major organic acids (formic acid, acetic acid, oxalic acid), as well as inorganic anions (sulfate, chloride, nitrate) and cations (sodium, potassium, ammonium, calcium, magnesium) in cloud water, aerosol, and cloud droplet residual samples collected at the summit of Whiteface Mountain (WFM) in the Adirondack Mountains, northern New York State. We also evaluate the contribution of these organic acids to water-soluble organic carbon (WSOC) concentrations. Previous studies have explored the oxalate: WSOC ratio with ozone levels, aiming to deduce the influence of biogenic Volatile Organic Compounds (VOCs) on Secondary Organic Aerosol (SOA) formation from nearby forest ecosystems. Our poster presents new observations that significantly broaden this understanding by comparing to diverse global environments and analyzing both cloud water and aerosol phases. Additionally, we introduce oxalate: sulfate ratios from our dataset, proposed by other researchers as a key indicator of aqueous processing due to the enhanced production rates of these ions by liquid water content (sulfate ion) or droplet surface area (oxalate ion). We compare the observed range of oxalate: sulfate ratios with those from field campaigns conducted in other regions. Moreover, for the first time, we examine the relationship between ammonium and organic acids across cloud water, aerosol, and droplet residual samples collected in 2023, and discuss the influence of wildfire smoke on these dynamics. 
    more » « less
  3. Hexavalent chromium, Cr(VI), is a highly toxic carcinogen occurring in natural and industrial environments. Pathways to economical reduction to the more benign trivalent form, Cr(III), are necessary for treatment of contaminated groundwater. Magnetite’s (Fe3O4) mixture of Fe(II) and Fe(III) make it a promising material for remediation. This study investigated the mechanisms for reduction of Cr(VI) catalyzed by Fe3O4as a redox mediator in the presence of oxalic acid in HClO4and SO42−solutions, a system where the interactions among these species are not fully understood. The reduction of Cr(VI) in different anion environments is first measured on an Au rotating disk electrode. SO42−inhibits the formation of a passivation layer and Cl-partially inhibits passivation. The reduction of Cr(VI) on Fe3O4is limited by the availability of Fe(II) surface sites. Addition of oxalic acid works synergistically through liberation of Fe(II)-oxalate and soluble Cr(III)-oxalate products. A combination of Fe3O4activated by exposure to oxalic acid and use of an oxalic acid solution as a medium for reduction of Cr(VI) produces over 97% removal of Cr(VI). These results provide relevant insights regarding interactions of Fe3O4with organic acids and the anion environment which lead to the effective reduction of Cr(VI). 
    more » « less
  4. Abstract Oxalate salts in organic matter are potential substrates for the oxalate‐carbonate pathway, which can sequester carbon in drylands. We compared calcium oxalate (CaOx) and water‐soluble oxalate (SOx) concentrations of samples of vegetation and termite excrement (frass) collected from termite mounds in sites across a regional rainfall gradient in western South Africa. We developed mid‐infrared (MIR) spectroscopic models to quantify oxalate components in vegetation extracts (n = 30) and frass samples (n = 39). The MIR spectroscopic method was more efficient than chemical analytical techniques of oxalate measurement. The median CaOx concentration of plants (0.311 mmol g−1) was four times greater than frass (0.081 mmol g−1), which may be explained by degradation of oxalates by microorganisms or selective harvesting of low‐oxalate vegetation by termites. The mean CaOx content of frass from sites in mesic regions (0.042 mmol g−1) was lower relative to frass from sites in more arid regions (0.156 mmol g−1), and lower in termite mounds (0.048 mmol g−1) compared with off‐mound samples (0.131 mmol g−1). Frass collected from sites with higher rainfall had a lower mean SOx content (0.006 mmol g−1, respectively) compared with frass from sites with lower rainfall (0.013 mmol g−1, respectively). This may be attributed to faster degradation of CaOx in soils with greater moisture content. Estimated annual inputs of carbon (17.6 kg mound−1) and calcium (2.55 kg mound−1, 20% of which occurs as CaOx) due to termite frass deposition may be instrumental in the formation of calcite via the oxalate‐carbonate pathway in soils of earthen mounds occupied by termites. This work is relevant to modeling carbon storage in drylands where termites are significant consumers of vegetation. 
    more » « less
  5. The deep sea (below 200 m depth) is the largest carbon sink on Earth. It hosts abundant biodiversity that underpins the carbon cycle and provides provisioning, supporting, regulating and cultural ecosystem services. There is growing attention to climate-regulating ocean ecosystem services from the scientific, business and political sectors. In this essay we synthesize the unique biophysical, socioeconomic and governance characteristics of the deep sea to critically assess opportunities for deep-sea blue carbon to mitigate climate change. Deep-sea blue carbon consists of carbon fluxes and storage including carbon transferred from the atmosphere by the inorganic and organic carbon pumps to deep water, carbon sequestered in the skeletons and bodies of deep-sea organisms, carbon buried within sediments or captured in carbonate rock. However, mitigating climate change through deep-sea blue carbon enhancement suffers from lack of scientific knowledge and verification, technological limitations, potential environmental impacts, a lack of cooperation and collaboration, and underdeveloped governance. Together, these issues suggest that deep-sea climate change mitigation is limited. Thus, we suggest that a strong focus on blue carbon is too limited a framework for managing the deep sea to contribute to international goals, including the Sustainable Development Goals (SDGs), the Paris Agreement and the post-2020 Biodiversity Goals. Instead, the deep sea can be viewed as a more holistic nature-based solution, including many ecosystem services and biodiversity in addition to climate. Environmental impact assessments (EIAs), area-based management, pollution reduction, moratoria, carbon accounting and fisheries management are tools in international treaties that could help realize benefits from deep-sea, nature-based solutions. 
    more » « less