The synthesis of hierarchical lamellar zeolites with a controlled meso-/microporous morphology and acidity is an expanding area of research interest for a wide range of applications. Here, we report a one-step synthesis of a hierarchical meso-/microporous lamellar MFI–Sn/Al zeolite ( i.e. , containing both Lewis acidic Sn- and Al-sites and a Brønsted acidic Al–O(H)–Si site) and its catalytic application for the conversion of glucose into 5-(ethoxymethyl)furfural (EMF). The MFI–Sn/Al zeolite was prepared with the assistance of a diquaternary ammonium ([C 22 H 45 –N + (CH 3 ) 2 –C 6 H 12 –N + (CH 3 ) 2 –C 6 H 13 ]Br 2− , C 22-6-6 ) template in a composition of 100SiO 2 /5C 22-6-6 /18.5Na 2 O/ x Al 2 O 3 / y SnO 2 /2957H 2 O ( x = 0.5, 1, and 2; y = 1 and 2, respectively). The MFI–Sn/Al zeolites innovatively feature dual meso-/microporosity and dual Lewis and Brønsted acidity, which enabled a three-step reaction cascade for EMF synthesis from glucose in ethanol solvent. The reaction proceeded via the isomerization of glucose to fructose over Lewis acidic Sn sites and the dehydration of fructose to 5-hydroxymethylfurfural (HMF) and then the etherification of HMF and ethanol to EMF over the Brønsted acidic Al–O(H)–Si sites. The co-existence of multiple acidities in a single zeolite catalyst enabled one-pot cascade reactions for carbohydrate upgrading. The dual meso-/microporosity in the MFI–Sn/Al zeolites facilitated mass transport in processing of bulky biomass molecules. The balance of both types of acidity and meso-/microporosity realized an EMF yield as high as 44% from the glucose reactant.
more »
« less
Zeolite‐Based Catalysts for Conversion of Oxygenated Polymer Waste by Positron Annihilation
Abstract Positron Annihilation Lifetime Spectroscopy (PALS) has been employed to investigate the catalysts HZSM‐5 and MESO−Y, which play a pivotal role in catalyzing and upgrading plastics, with a primary focus on oxygenated polymers, thereby transforming existing plastic materials into simpler, higher‐quality value‐added products. In this study, PALS was systematically compared with other complementary analytical techniques. The research outcomes have successfully demonstrated the efficacy of PALS in elucidating the morphology and topology of zeolites at micro/meso‐meter scales. The first experiment focuses on H‐ZSM‐5 zeolite subjected to treatments involving polyurethane and polypropylene. The second experiment delves into H‐ZSM‐5 zeolites with varying Si/Al ratios, both before and after conversion. The third experiment investigates Y zeolites that are surfactant templated to induce meso‐porosity, examining their fresh state as well as their post‐conversion condition. The PALS analysis was supplemented by BET (Brunauer‐Emmett‐Teller) analysis and NMR (Nuclear Magnetic Resonance) spectroscopies. Notably, PALS exhibits superior sensitivity, at the sub‐nanometer scale, suggesting its potential as a preferred complementary method for catalysis studies. In conclusion, the integration of PALS into the repertoire of analytical tools enhances our understanding of catalyst behavior and catalytic processes, offering valuable insights for the advancement of plastic recycling and catalysis research.
more »
« less
- Award ID(s):
- 2052817
- PAR ID:
- 10487601
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemCatChem
- Volume:
- 16
- Issue:
- 4
- ISSN:
- 1867-3880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Zeolites (ZSM-5 and Beta) with different SiO2/Al2O3 ratios were synthesized as solid acids for hydrolyzing cellulose in an inorganic ionic liquid system (lithium bromide trihydrate solution, LBTH) under mild conditions. The results indicated that the texture properties of zeolite had little effect on catalytic activity, while acidity of zeolite was crucial to the cellulose hydrolysis. In the LBTH system, H-form zeolites released H+ into the solution from their acid sites via ion-exchange with Li+, which hydrolyzed the cellulose already dissolved. This unique homogeneous hydrolysis mechanism was the primary reason for the excellent performance of the zeolites in catalyzing cellulose hydrolysis in the LBTH system. It was found cellulose could be completely hydrolyzed to glucose and oligoglucan by 2% (w/w on cellulose) zeolite at 140 °C within 3 h with a single-pass glucose yield 61%. The zeolites could be recovered with 50% initial catalytic activity after regeneration and reused with stable catalytic activity.more » « less
-
Abstract Fe‐based catalysts are an active, selective, and low‐cost option for tuning Fischer‐Tropsch synthesis (FTS) selectivity toward desirable light olefins. By encapsulating Fe within ZSM‐5, the resultant core‐shell catalysts have the potential to control the product distribution via secondary reactions that occur over the acid sites of the zeolite shell. In this paper, Fe is encapsulated within ZSM‐5 via the seed‐directed growth technique and characterized with a suite of analytical techniques including Mössbauer spectroscopy and X‐ray absorption fine structure (XAFS). Characterization of the core‐shell catalysts indicates that some of the Fe‐based active phase is destabilized during seed‐directed growth, demonstrating the challenges associated with encapsulating an Fe‐based active phase within zeolites. However, comparing FTS performance of the core‐shell catalyst with the Fe‐based control synthesized via incipient wetness impregnation demonstrates improved selectivity toward the desired C2‐C4olefins and C5+hydrocarbons.more » « less
-
Roosa, Stephen A (Ed.)This experimental process demonstrates the potential of advancing the technology of lignocellulosic-based biofuels. Maximized bio-oil yields and gasoline range aromatics were obtained from the pyrolysis of switchgrass biomass in a medium-scale fixed bed reactor (48.2 L). The reaction’s final temperature was set at 520ºC while the carrier gas flow rate was varied at (50 L min-1, 75 L min-1 and 100 L min-1) both without and with the use of the ZSM-5 catalyst. Bio-oil yields of 18.2%, 26.9%, and 34.1% were generated without catalyst. Using the ZSM-5 catalyst, bio-oil yields of 20.2%, 41.5%, and 47.7% were generated. At 75 L min-1, 9.6% gasoline range organics (GROs) were detected without the catalyst and 12.4% aromatics were detected in the experiment with ZSM-5 catalyst. At 100 L min-1, 10.5%, and 13.7% of aromatics were detected without and with ZSM-5 catalyst respectively. At 75 L min-1, 14.5% of oxygen content recorded without catalyst, and 5.6% with ZSM-5 catalyst. At 100 L min-1, oxygen content was 10.4% without catalyst, and 8.6 % with ZSM-5 catalyst. The effects of carrier gas flow rate variations and a ZSM-5 catalyst on bio-oil yields and quality were experimentally demonstrated using a single-step thermochemical conversion process. This is a major development towards improving U.S energy security and achieving global CO2 emissions mitigation targets.more » « less
-
With the ever-increasing demand for plastics, sustainable recycling methods are key necessities. The current plastics industry can manage to recycle only 10% of the 400 million metric tons of plastic produced globally. Waste plastics, in the current infrastructure, land up mostly in landfills. Although a lot of research efforts have been spent on processing and recycling co-mingled mixed plastics, energy-efficient sustainable and scalable routes for plastic upcycling are still lacking. Catalytic valorization of waste plastic feedstock is one of the potential scalable routes for plastic upcycling. Silica-alumina based materials, and zeolites have shown a lot of promise. A major interest lies in restricting catalyst deactivation, and refining product selectivity and yield for such catalytic processes. This article highlights ChemPren technology as a clean energy solution to waste plastic recycling. Co-mingled, mixed plastic feedstock along with spray dried, attrition resistant, ZSM-5 containing catalysts is preprocessed with an extruder to form optimally sized particles and fed into a fluidized bed reactor for short contact times to produce selectively and in high yields ethylenes, propylenes and butylenes. This techno-economic perspective indicates that the ChemPren technology can produce propylene at $0.16 per lb, whereas the current selling price of virgin propylene is $0.54 per lb. This technology can serve as a platform for mixed plastic upcycling, with more advancements necessary in the form of robust and resilient catalysts and reactor operation strategies for tuning product selectivity.more » « less
An official website of the United States government
