skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparative physiology reveals heat stress disrupts acid-base homeostasis independent of symbiotic state in the model cnidarian Exaiptasia diaphana
Climate change threatens symbiotic cnidarians’ survival by causing photosymbiosis breakdown in a process known as bleaching. Direct effects of temperature on cnidarian host physiology remain difficult to describe because heatwaves depress symbiont performance, leading to host stress and starvation. The symbiotic sea anemone Exaiptasia diaphana provides an opportune system to disentangle direct vs. indirect heat effects on the host, since it can survive indefinitely without symbionts. We tested the hypothesis that heat directly impairs cnidarian physiology by comparing symbiotic and aposymbiotic individuals of two laboratory subpopulations of a commonly used clonal strain of E. diaphana, CC7. We exposed anemones to a range of temperatures (ambient, +2°C, +4°C, +6°C) for 15–18 days, then measured their symbiont population densities, autotrophic carbon assimilation and translocation, photosynthesis, respiration, and host intracellular pH (pHi). Symbiotic anemones from the two subpopulations differed in size and symbiont density and exhibited distinct heat stress responses, highlighting the importance of acclimation to different laboratory conditions. Specifically, the cohort with higher initial symbiont densities experienced dose-dependent symbiont loss with increasing temperature and a corresponding decline in host photosynthate accumulation. In contrast, the cohort with lower initial symbiont densities did not lose symbionts or assimilate less photosynthate when heated, similar to the response of aposymbiotic anemones. However, anemone pHi decreased at higher temperatures regardless of cohort, symbiont presence, or photosynthate translocation, indicating that heat consistently disrupts cnidarian acid-base homeostasis independent of symbiotic status or mutualism breakdown. Thus, pH regulation may be a critical vulnerability for cnidarians in a changing climate.  more » « less
Award ID(s):
1923743
PAR ID:
10487624
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Company of Biologists
Date Published:
Journal Name:
Journal of Experimental Biology
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability of symbionts to recolonize their hosts after a period of dysbiosis is essential to maintain a resilient partnership. Many cnidarians rely on photosynthate provided from a large algal symbiont population. Under periods of thermal stress, symbiont densities in host cnidarians decline, and the recovery of hosts is dependent on the re-establishment of symbiosis. The cellular mechanisms that govern this process of colonization are not well-defined and require further exploration. To study this process in the symbiotic sea anemone model Exaiptasia diaphana , commonly called Aiptasia, we developed a non-invasive, efficient method of imaging that uses autofluorescence to measure the abundance of symbiont cells, which were spatially distributed into distinct cell clusters within the gastrodermis of host tentacles. We estimated cell cluster sizes to measure the occurrence of singlets, doublets, and so on up to much larger cell clusters, and characterized colonization patterns by native and non-native symbionts. Native symbiont Breviolum minutum rapidly recolonized hosts and rapidly exited under elevated temperature, with increased bleaching susceptibility for larger symbiont clusters. In contrast, populations of non-native symbionts Symbiodinium microadriaticum and Durusdinium trenchii persisted at low levels under elevated temperature. To identify mechanisms driving colonization patterns, we simulated symbiont population changes through time and determined that migration was necessary to create observed patterns (i.e., egression of symbionts from larger clusters to establish new clusters). Our results support a mechanism where symbionts repopulate hosts in a predictable cluster pattern, and provide novel evidence that colonization requires both localized proliferation and continuous migration. 
    more » « less
  2. Mutualistic symbioses between cnidarians and photosynthetic algae are modulated by complex interactions between host immunity and environmental conditions. Here, we investigate how symbiosis interacts with food limitation to influence gene expression and stress response programming in the sea anemoneExaiptasia pallida(Aiptasia). Transcriptomic responses to starvation were similar between symbiotic and aposymbiotic Aiptasia; however, aposymbiotic anemone responses were stronger. Starved Aiptasia of both symbiotic states exhibited increased protein levels of immune-related transcription factor NF-κB, its associated gene pathways, and putative target genes. However, this starvation-induced increase in NF-κB correlated with increased immunity only in symbiotic anemones. Furthermore, starvation had opposite effects on Aiptasia susceptibility to pathogen and oxidative stress challenges, suggesting distinct energetic priorities under food scarce conditions. Finally, when we compared starvation responses in Aiptasia to those of a facultative coral and non-symbiotic anemone, ‘defence’ responses were similarly regulated in Aiptasia and the facultative coral, but not in the non-symbiotic anemone. This pattern suggests that capacity for symbiosis influences immune responses in cnidarians. In summary, expression of certain immune pathways—including NF-κB—does not necessarily predict susceptibility to pathogens, highlighting the complexities of cnidarian immunity and the influence of symbiosis under varying energetic demands. 
    more » « less
  3. The future of coral reefs in a warming world depends on corals’ ability to recover from bleaching, the loss of their symbiotic dinoflagellate algae (Symbiodiniaceae) during marine heatwaves. Heat-tolerant symbiont species can remain in symbiosis during heat stress, but often provide less photosynthate to the host than heat-sensitive species under ambient conditions. Understanding how heat stress changes the dynamics of this tradeoff between stress tolerance and mutualism contribution is crucial for predicting coral success under climate change. To test how symbiont resource allocation affects coral recovery from heat stress, we exposed the coral Montipora capitata hosting either heat-sensitive Cladocopium C31 (C) or heat-tolerant Durusdinium glynnii (D) to heat stress. D regained symbiont density and photochemical efficiency faster after heat treat- ment than C, but symbiont recovery did not restore coral biomass or calcification rates to pre-bleaching levels in the initial recovery period. D populations also contributed less photosynthate to the host relative to C, even during heat stress. Further, higher-density symbiont populations of both species retained more photosynthate than lower-density populations, and corals receiving less photosynthate exhibited reduced calcification rates and lower intracellular pH. This is the first evidence that symbiont density and carbon translocation are negatively related, and the first to establish a link between Symbiodiniaceae carbon translocation and coral cellular homeostasis. Together, these results suggest the energy demand of symbiont regrowth after bleaching reduces their mutualism contribution and can thus delay host recovery. Reestablishing a beneficial endos- ymbiosis imposes additional costs as holobionts overcome stress, and may explain latent mortality among coral populations after alleviation of heat stress in the field. 
    more » « less
  4. Mutualistic symbioses are common, especially in nutrient-poor environments where an association between hosts and symbionts can allow the symbiotic partners to persist and collectively out-compete non-symbiotic species. Usually these mutualisms are built on an intimate transfer of energy and nutrients (e.g. carbon and nitrogen) between host and symbiont. However, resource availability is not consistent, and the benefit of the symbiotic association can depend on the availability of resources to mutualists. We manipulated the diets of two temperate sea anemone species in the genus Anthopleura in the field and recorded the responses of sea anemones and algal symbionts in the family Symbiodiniaceae to our treatments. Algal symbiont density, symbiont volume and photosynthetic efficiency of symbionts responded to changes in sea anemone diet, but the responses depended on the species of sea anemone. We suggest that temperate sea anemones and their symbionts can respond to changes in anemone diet, modifying the balance between heterotrophy and autotrophy in the symbiosis. Our data support the hypothesis that symbionts are upregulated or downregulated based on food availability, allowing for a flexible nutritional strategy based on external resources. 
    more » « less
  5. Kormas, Konstantinos Aristomenis (Ed.)
    ABSTRACT Corals owe their ecological success to their symbiotic relationship with dinoflagellate algae (family Symbiodiniaceae). While the negative effects of heat stress on this symbiosis are well studied, how heat stress affects the onset of symbiosis and symbiont specificity is less explored. In this work, we used the model sea anemone, Exaiptasia diaphana (commonly referred to as Aiptasia), and its native symbiont, Breviolum minutum , to study the effects of heat stress on the colonization of Aiptasia by algae and the algal cell-surface glycome. Heat stress caused a decrease in the colonization of Aiptasia by algae that were not due to confounding variables such as algal motility or oxidative stress. With mass spectrometric analysis and lectin staining, a thermally induced enrichment of glycans previously found to be associated with free-living strains of algae (high-mannoside glycans) and a concomitant reduction in glycans putatively associated with symbiotic strains of algae (galactosylated glycans) were identified. Differential enrichment of specific sialic acid glycans was also identified, although their role in this symbiosis remains unclear. We also discuss the methods used to analyze the cell-surface glycome of algae, evaluate current limitations, and provide suggestions for future work in algal-coral glycobiology. Overall, this study provided insight into how stress may affect the symbiosis between cnidarians and their algal symbionts by altering the glycome of the symbiodinian partner. IMPORTANCE Coral reefs are under threat from global climate change. Their decline is mainly caused by the fragility of their symbiotic relationship with dinoflagellate algae which they rely upon for their ecological success. To better understand coral biology, researchers used the sea anemone, Aiptasia, a model system for the study of coral-algal symbiosis, and characterized how heat stress can alter the algae's ability to communicate to the coral host. This study found that heat stress caused a decline in algal colonization success and impacted the cell surface molecules of the algae such that it became more like that of nonsymbiotic species of algae. This work adds to our understanding of the molecular signals involved in coral-algal symbiosis and how it breaks down during heat stress. 
    more » « less