Abstract Lithium‐rich transition metal chalcogenides are witnessing a revival as candidates for Li‐ion cathode materials, spurred by the boost in their capacities from transcending conventional redox processes based on cationic states and tapping into additional chalcogenide states. A particularly striking case is Li2TiS3‐ySey, which features a d0metal. While the end members are expectedly inactive, substantial capacities are measured when both Se and S are present. Using X‐ray absorption spectroscopy, it is shown that the electronic structure of Li2TiS3‐ySeyis not a simple combination of the end members. The data confirm previous hypotheses that, in Li2TiS2.4Se0.6, this behavior is underpinned by concurrent and reversible redox of only S and Se, and identify key electronic states. Moreover, wavelet transforms of the extended X‐ray absorption fine structure provide direct evidence of the formation of short Se–Se units upon charging. The study uncovers the underpinnings of this intriguing reactivity and highlights the richness of redox chemistry in complex solids.
more »
« less
Structural and Chemical Evolution of Highly Fluorinated Li‐Rich Disordered Rocksalt Oxyfluorides as a Function of Temperature
Abstract Li‐rich disordered rocksalt (DRS) oxyfluorides have emerged as promising high‐energy cathode materials for lithium‐ion batteries. While a high level of fluorination in DRS materials offers performance advantages, it can only be achieved via mechanochemical synthesis, which poses challenges of reproducibility and scalability. The definition of relationships between fluorination and structural stability is required to devise alternative methods that overcome these challenges. In this study, the thermal evolution of three highly fluorinated phases, Li2TMO2F (TM = Mn, Co, and Ni), is investigated in an inert atmosphere. Diffraction and spectroscopic techniques are utilized to examine their electronic and chemical states up until conditions of decomposition. The analysis reveals that the materials phase‐separate above 400 °C, at most. It is also observed that heat‐treated DRS materials exhibit intricate changes in the local coordination of the metals, including their spin, and ordering compared to the pristine states. The changes upon annealing are accompanied by a modulation of the voltage profile, including reduced hysteresis, when used as electrodes. These results provide an in‐depth understanding of the fundamental crystal chemistry of DRS oxyfluorides in view of their promising role as the next generation of Li‐ion cathodes.
more »
« less
- Award ID(s):
- 2118020
- PAR ID:
- 10487797
- Publisher / Repository:
- John Wiley and Sons (open access)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Over the past decade, solid‐state batteries have garnered significant attentions due to their potentials to deliver high energy density and excellent safety. Considering the abundant sodium (Na) resources in contrast to lithium (Li), the development of sodium‐based batteries has become increasingly appealing. Sulfide‐based superionic conductors are widely considered as promising solid eletcrolytes (SEs) in solid‐state Na batteries due to the features of high ionic conductivity and cold‐press densification. In recent years, tremendous efforts have been made to investigate sulfide‐based Na‐ion conductors on their synthesis, compositions, conductivity, and the feasibility in batteries. However, there are still several challenges to overcome for their practical applications in high performance solid‐state Na batteries. This article provides a comprehensive update on the synthesis, structure, and properties of three dominant sulfide‐based Na‐ion conductors (Na3PS4, Na3SbS4, and Na11Sn2PS12), and their families that have a variety of anion and cation doping. Additionally, the interface stability of these sulfide electrolytes toward the anode is reviewed, as well as the electrochemical performance of solid‐state Na batteries based on different types of cathode materials (metal sulfides, oxides, and organics). Finally, the perspective and outlook for the development and practical utilization of sulfide‐based SE in solid‐state batteries are discussed.more » « less
-
Abstract Layered oxide cathode with a Li‐O‐vacancy configuration offers high capacity by leveraging additional oxygen redox reactions. However, it faces severe challenges of sluggish kinetics of oxygen redox reactions and lattice oxygen loss, resulting in slow Li+diffusion and rapid electrochemical degradation. Herein, Ti is introduced as electrochemical inactive element into Li‐O‐vacancy configuration to form Mn/vacancy/Ti arrangement within transition metal layers of layered oxide, achieving a marked increase in average output voltage at high current density compared with Ti‐free counterpart. Not only voltage hysteresis between charge and discharge processes can be significantly reduced, but rate capability can be heightened in Li4/7[□1/7Ti1/7Mn5/7]O2by means of retrained over‐potential and improved Li+diffusivity. Furthermore, theoretical calculations suggest that these improvements stem from Ti substitution, which elongates the Li─O bond and lowers the Li+migration energy barrier. Besides, in situ differential electrochemical mass spectrometry and soft X‐ray absorption spectroscopy reveal the modified Li‐O‐vacancy configuration enables reversible anionic and cationic redox behaviors during cycling. These findings provide a promising strategy for tailoring oxygen redox activity and accelerating Li+diffusion kinetics in layered cathode materials with oxygen redox chemistry.more » « less
-
Abstract High-throughput materials research is strongly required to accelerate the development of safe and high energy-density lithium-ion battery (LIB) applicable to electric vehicle and energy storage system. The artificial intelligence, including machine learning with neural networks such as Boltzmann neural networks and convolutional neural networks (CNN), is a powerful tool to explore next-generation electrode materials and functional additives. In this paper, we develop a prediction model that classifies the major composition (e.g., 333, 523, 622, and 811) and different states (e.g., pristine, pre-cycled, and 100 times cycled) of various Li(Ni, Co, Mn)O2(NCM) cathodes via CNN trained on scanning electron microscopy (SEM) images. Based on those results, our trained CNN model shows a high accuracy of 99.6% where the number of test set is 3840. In addition, the model can be applied to the case of untrained SEM data of NCM cathodes with functional electrolyte additives.more » « less
-
Sodium-ion batteries (SIBs) with Earth-abundant elements are promising for global electrification, but electrolyte stability impacts electrochemical performance and safety. This study compares non-fluorinated 1,2-diethoxyethane (DEE) and fluorinated 1,2-bis(2,2-difluoroethoxy)ethane (F4DEE) as electrolyte solvents in Na0.97Ca0.03[Mn0.39Fe0.31Ni0.22Zn0.08]O2(NCMFNZO)/hard carbon (HC) pouch cells up to 4.0 V. Fluorination slightly reduces ionic conductivity and increases viscosity but significantly enhances electrochemical stability and safety. Cells with F4DEE exhibit lower impedance, reduced gas evolution, and less voltage decay during high-voltage storage at 40 °C. Long-term cycling shows ∼85% capacity retention after 500 cycles at 25 °C and ∼80% at 40 °C with less transition metal dissolution, outperforming DEE-based cells. Isothermal microcalorimetry reveals lower parasitic heat generation with F4DEE, while soft X-ray absorption spectroscopy confirms stabilized Ni and Mn oxidation states, indicating suppressed electrolyte oxidation. Accelerating rate calorimetry reveals improved thermal stability with F4DEE. These findings highlight fluorinated ether solvents as a promising approach to enhance SIB lifespan and safety, with ongoing challenges requiring further solvent and additive optimization.more » « less
An official website of the United States government

