skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Abnormal Driving Detection Using GPS Data
Given a GPS dataset comprising driving records captured at one-second intervals, this research addresses the challenge of Abnormal Driving Detection (ADD). The study introduces an integrated approach that leverages data preprocessing, dimensionality reduction, and clustering techniques. Speed Over Ground (SOG), Course Over Ground (COG), longitude (lon), and latitude (lat) data are aggregated into minute-level segments. We use Singular Value Decomposition (SVD) to reduce dimensionality, enabling K-means clustering to identify distinctive driving patterns. Results showcase the methodology's effectiveness in distinguishing normal from abnormal driving behaviors, offering promising insights for driver safety, insurance risk assessment, and personalized interventions.  more » « less
Award ID(s):
1844565
PAR ID:
10487844
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET)
ISSN:
1949-4092
ISBN:
979-8-3503-3111-0
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Location:
Boca Raton, FL, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Given a road network and a set of trajectory data, the anomalous behavior detection (ABD) problem is to identify drivers that show significant directional deviations, hard-brakings, and accelerations in their trips. The ABD problem is important in many societal applications, including Mild Cognitive Impairment (MCI) detection and safe route recommendations for older drivers. The ABD problem is computationally challenging due to the large size of temporally-detailed trajectories dataset. In this paper, we propose an Edge-Attributed Matrix that can represent the key properties of temporally-detailed trajectory datasets and identify abnormal driving behaviors. Experiments using real-world datasets demonstrated that our approach identifies abnormal driving behaviors. 
    more » « less
  2. null (Ed.)
    Self-driving vehicles are very susceptible to cyber attacks. This paper aims to utilize a machine learning approach in combating cyber attacks on self-driving vehicles. We focus on detecting incorrect data that are injected into the data bus of vehicles. We will utilize the extreme gradient boosting approach, as a promising example of machine learning, to classify such incorrect information. We will discuss in details the research methodology, which includes acquiring the driving data, preprocessing it, artificially inserting incorrect information, and finally classifying it. Our results show that the considered algorithm achieve accuracy of up to 92% in detecting the abnormal behavior on the car data bus. 
    more » « less
  3. Effective management of social-ecological systems (SESs) requires an understanding of human behavior. In many SESs, there are hundreds of agents or more interacting with governance and regulatory institutions, driving management outcomes through collective behavior. Agents in these systems often display consistent behavioral characteristics over time that can help reduce the dimensionality of SES data by enabling the assignment of types. Typologies of resource-user behavior both enrich our knowledge of user cultures and provide critical information for management. Here, we develop a data-driven framework to identify resource-user typologies in SESs with high-dimensional data. To demonstrate policy applications, we apply the framework to a tightly coupled SES, commercial fishing. We leverage large fisheries-dependent datasets that include mandatory vessel logbooks, observer datasets, and high-resolution geospatial vessel tracking technologies. We first quantify vessel and behavioral characteristics using data that encode fishers’ spatial decisions and behaviors. We then use clustering to classify these characteristics into discrete fishing behavioral types (FBTs), determining that 3 types emerge in our case study. Finally, we investigate how a series of disturbances applied selection pressure on these FBTs, causing the disproportionate loss of one group. Our framework not only provides an efficient and unbiased method for identifying FBTs in near real time, but it can also improve management outcomes by enabling ex ante investigation of the consequences of disturbances such as policy actions. 
    more » « less
  4. Abstract Principal Component Analysis (PCA) has long been a cornerstone in dimensionality reduction for high-dimensional data, including single-cell RNA sequencing (scRNA-seq). However, PCA’s performance typically degrades with increasing data size, can be sensitive to outliers, and assumes linearity. Recently, Random Projection (RP) methods have emerged as promising alternatives, addressing some of these limitations. This study systematically and comprehensively evaluates PCA and RP approaches, including Singular Value Decomposition (SVD) and randomized SVD, alongside Sparse and Gaussian Random Projection algorithms, with a focus on computational efficiency and downstream analysis effectiveness. We benchmark performance using multiple scRNA-seq datasets including labeled and unlabeled publicly available datasets. We apply Hierarchical Clustering and Spherical K-Means clustering algorithms to assess downstream clustering quality. For labeled datasets, clustering accuracy is measured using the Hungarian algorithm and Mutual Information. For unlabeled datasets, the Dunn Index and Gap Statistic capture cluster separation. Across both dataset types, the Within-Cluster Sum of Squares (WCSS) metric is used to assess variability. Additionally, locality preservation is examined, with RP outperforming PCA in several of the evaluated metrics. Our results demonstrate that RP not only surpasses PCA in computational speed but also rivals and, in some cases, exceeds PCA in preserving data variability and clustering quality. By providing a thorough benchmarking of PCA and RP methods, this work offers valuable insights into selecting optimal dimensionality reduction techniques, balancing computational performance, scalability, and the quality of downstream analyses. 
    more » « less
  5. Mining spatiotemporal mobility patterns is crucial for optimizing urban planning, enhancing transportation systems, and improving public safety by providing useful insights into human movement and behavior over space and time. As an unsupervised learning technique, time series clustering has gained considerable attention due to its efficiency. However, the existing literature has often overlooked the inherent characteristics of mobility data, including high-dimensionality, noise, outliers, and time distortions. This oversight can lead to potentially large computational costs and inaccurate patterns. To address these challenges, this paper proposes a novel neural network-based method integrating temporal autoencoder and dynamic time warping-based K-means clustering algorithm to mutually promote each other for mining spatiotemporal mobility patterns. Comparative results showed that our proposed method outperformed several time series clustering techniques in accurately identifying mobility patterns on both synthetic and real-world data, which provides a reliable foundation for data-driven decision-making. Furthermore, we applied the method to monthly county-level mobility data during the COVID-19 pandemic in the U.S., revealing significant differences in mobility changes between rural and urban areas, as well as the impact of public response and health considerations on mobility patterns. 
    more » « less