skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Agroforestry Distribution and Contributions in Ancient Hawaiian Agriculture
Abstract Agriculture is one of the most fundamental ways in which human societies interact with the environment. The form and function of agriculture have important socio-political implications in terms of yields, labor requirements, variability and resilience, and elite control. Hawai‘i has been used as a model system for the discussion of coupled human and natural systems, and how the uneven distribution of agricultural opportunities has manifested in the political ecology. However, consideration of agriculture has emphasized forms with physical infrastructure documented through archaeology and have not included arboricultural forms that were extensive among Pacific Islands. We leverage existing, independent data sets to build and validate spatial models of two intensities of arboriculture across the Hawaiian archipelago: Agroforestry and Novel Forest. Model validation demonstrates good accuracy that includes both expected and unexpected sources of errors. Results of the models demonstrate that arboricultural techniques accounted for ~70% of the agricultural potential by area and ~40% of the agricultural potential by yield. Unlike existing agricultural forms modeled, such as flooded wetland terrace cultivation and rainfed field production, which have strong distributional patterns based on the age of the islands, arboricultural potential is well distributed across all the islands. The extent, distribution, and characteristics of arboricultural methods provide important augmentation of the current narrative of production dynamics and distribution, and the political ecology, of pre-contact Hawai‘i.  more » « less
Award ID(s):
1941595
PAR ID:
10487867
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Human Ecology
Volume:
51
Issue:
6
ISSN:
0300-7839
Format(s):
Medium: X Size: p. 1113-1125
Size(s):
p. 1113-1125
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As municipalities across the global North highlight urban agriculture as a marker of their ‘greenness’, how can we best understand how the spaces and practices of urban food production are governed? This article develops an analysis of urban agriculture as a complex site of governance in which numerous interests engage. We underscore the politics of governance, through which some actors resist the imposition of a narrowly normative and exclusive notion of urban agriculture and against which they envision and enact alternatives. The article contributes to efforts to transcend the often dichotomous framing of urban agriculture as radical or neoliberal, formal or informal, political or post‐political by employing ‘everyday governance’ and ‘everyday resistance’ as lenses through which to focus on the prosaic practices of engaging with, pushing back against, and stepping beyond the imposition of hegemonic models of urban agriculture. We argue that the co‐constitutive, ‘braided’ nature of urban agricultural governance is revealed through attention to the manifold forms of negotiation and resistance to formal urban agricultural governance. Moreover, our perspective highlights the ways that some practitioners are excluded by, challenge, or re‐vision formal definitions of urban agriculture. We draw on the cases of Portland, OR and Vancouver, BC to illustrate our argument. 
    more » « less
  2. The development of agricultural systems is a fundamental component of social-ecological transformation and a predominant factor influencing social behavior and structuring. However, oversimplification of traditional agricultural production often occurs and limits the understanding of past populations’ abilities to mitigate potential risks and enhance food security through effective land management strategies. The social-ecological traits that characterize the Hawaiian Islands provides a unique vantage to explore human ecodynamics over the longue durée and assess how these systems can be used to inform current and future land-use strategies, both locally and globally. Using the Hawaiian archipelago as a case study, digitized historical maps depicting a range of crop species and cropping systems were georeferenced to assess previous estimates of land use by early island populations and demonstrate the limitations of narratives constructed from previously modeled extents of land-use activity that rely solely on the preservation of archaeological remnants. The results of our mapped vegetation correspond well with the more intensive forms of agriculture that were included in previous models, but overall indicate that previous models do not fully represent the extent of land use by early island populations, missing vast applications of agroforestry and arboriculture. Based on our findings, we argue that the omission of cultivation systems not associated with physical infrastructure has vastly limited the comprehension of land use by early island populations and driven narratives in social-ecological dynamics that underestimate the extent of agricultural production while inferring sociopolitical outcomes based on the prevailing agricultural dichotomy. To remedy this limitation, we suggest a multimethods approach that integrates diverse data sets for an agricultural model that is more inclusive of all agricultural forms implemented by early Native Hawaiian populations and, therefore, is more representative of the extents of land use by island populations. 
    more » « less
  3. Dominant forms of agricultural production in the U.S. Upper Midwest are undermining human health and well being. Restoring critical ecosystem functions to agriculture is key to stabilizing climate, reducing flooding, cleaning water, and enhancing biodiversity. We used simulation models to compare ecosystem functions (food-energy production, nutrient retention, and water infiltration) provided by vegetation associated with continuous corn, corn-soybean rotation, and perennial grassland producing feed for dairy livestock. Compared to continuous corn, most ecosystem functions dramatically improved in the perennial grassland system (nitrate leaching reduced ~90%, phosphorus loss reduced ~88%, drainage increased ~25%, evapotranspiration reduced ~29%), which will translate to improved ecosystem services. Our results emphasize the need to incentivize multiple ecosystem services when managing agricultural landscapes. 
    more » « less
  4. Godfrey, Kris (Ed.)
    Abstract Islands are insular environments that are negatively impacted by invasive species. In Hawai‘i, at least 21 non-native bees have been documented to date, joining the diversity of >9,000 non-native and invasive species to the archipelago. The goal of this study is to describe the persistence, genetic diversity, and natural history of the most recently established bee to Hawai‘i, Megachile policaris Say, 1831 (Hymenoptera: Megachilidae). Contemporary surveys identify that M. policaris is present on at least O‘ahu, Maui, and Hawai‘i Island, with the earliest detection of the species in 2017. Furthermore, repeated surveys and observations by community members support the hypothesis that M. policaris has been established on Hawai‘i Island from 2017 to 2020. DNA sequenced fragments of the cytochrome oxidase I locus identify two distinct haplotypes on Hawai‘i Island, suggesting that at least two founders have colonized the island. In their native range, M. policaris is documented to forage on at least 21 different plant families, which are represented in Hawai‘i. Finally, ensemble species distribution models (SDMs) constructed with four bioclimatic variables and occurrence data from the native range of M. policaris predicts high habitat suitability on the leeward side of islands throughout the archipelago and at high elevation habitats. While many of the observations presented in our study fall within the predicted habitat suitability on Hawai‘i, we also detected the M. policaris on the windward side of Hawai‘i Island suggesting that the SDMs we constructed likely do not capture the bioclimatic niche flexibility of the species. 
    more » « less
  5. Infectious disease can reduce labor productivity and incomes, trapping subpopulations in a vicious cycle of ill health and poverty. Efforts to boost African farmers’ agricultural production through fertilizer use can inadvertently promote the growth of aquatic vegetation that hosts disease vectors. Recent trials established that removing aquatic vegetation habitat for snail intermediate hosts reduces schistosomiasis infection rates in children, while converting the harvested vegetation into compost boosts agricultural productivity and incomes. We develop a bioeconomic model that interacts an analytical microeconomic model of agricultural households’ behavior, health status, and incomes over time with a dynamic model of schistosomiasis disease ecology. We calibrate the model with field data from northern Senegal. We show analytically and via simulation that local conversion of invasive aquatic vegetation to compost changes the feedback among interlinked disease, aquatic, and agricultural systems, reducing schistosomiasis infection and increasing incomes relative to the current status quo, in which villagers rarely remove aquatic vegetation. Aquatic vegetation removal disrupts the poverty-disease trap by reducing habitat for snails that vector the infectious helminth and by promoting the production of compost that returns to agricultural soils nutrients that currently leach into surface water from on-farm fertilizer applications. The result is healthier people, more productive labor, cleaner water, more productive agriculture, and higher incomes. Our model illustrates how this ecological intervention changes the feedback between the human and natural systems, potentially freeing rural households from poverty-disease traps. 
    more » « less