Abstract Changes in land use and land cover (LULC) due to agricultural expansion, commercial land management and other human‐driven modifications significantly influence the ecology of pathogens and vectors. This underscores the urgent need to understand how these respond to rapid and dynamic land use changes in these ecosystems and, critically, to identify strategies for mitigating their impacts.In tropical Central and South America, palm trees serve as primary habitats forRhodniuskissing bugs, vectors ofTrypanosoma cruzi, the etiologic agent of Chagas disease. This study investigates how LULC, weather and traits of the palmAttalea butyraceapredict the occurrence and infection ofRhodnius pallescens, integrating field data collection, molecular detection and spatial and hierarchical analyses across a rural landscape in Panama.Rhodnius pallescenswere collected from 46 palms in 11 communities with different landscape compositions including native forests, grasslands, successional forests and artificial structures. Robust occupancy modelling using land cover data at 10 m2resolution revealed that successional forest cover at 300 m spatial scale predicted greater occurrence ofR. pallescens, whereas native forest predicted lower occurrence. Quadratic models outperformed linear models, indicating occupancy peaks at intermediate land covers and palm tree traits.Real‐time PCR assays detectedTrypanosomainfections in 70% ofR. pallescensacross communities. Spatial autocorrelation analyses showed significant spatial clustering forT. cruzibut not forTrypanosoma rangeli. We used generalized additive mixed models to assess the influence of palm‐level and landscape‐scale attributes on parasite infection and identified significant nonlinear positive associations betweenT.cruziinfection and native forest and grassland, with high predictive accuracy (AUC = 0.90).Synthesis and applications. Findings here show that successional forest predicts greater kissing bug infestation risk in palm trees, whereas native forest predicts lower kissing bug occurrence but greater infection withT. cruzi. These insights can guide land use planning towards vegetation management practices that help minimizeT. cruzitransmission risks for rural communities. Importantly, vector surveillance should target forest‐grassland ecotones and consider forest successional stages near settlements, with intensified monitoring after disturbances; this approach is applicable to other vector‐borne pathogen systems shaped by land use change.
more »
« less
Tillage agriculture and afforestation threaten tropical savanna plant communities across a broad rainfall gradient in India
Abstract The consequences of land‐use change for savanna biodiversity remain undocumented in most regions of tropical Asia. One such region is western Maharashtra, India, where old‐growth savannas occupy a broad rainfall gradient and are increasingly rare due to agricultural conversion and afforestation.To understand the consequences of land‐use change, we sampled herbaceous plant communities of old‐growth savannas and three alternative land‐use types: tree plantations, tillage agriculture and agricultural fallows (n = 15 sites per type). Study sites spanned 457 to 1954 mm of mean annual precipitation—corresponding to the typical rainfall range of mesic savannas globally.Across the rainfall gradient, we found consistent declines in old‐growth savanna plant communities due to land‐use change. Local‐scale native species richness dropped from a mean of 12 species/m2in old‐growth savannas to 8, 6 and 3 species/m2in tree plantations, fallows and tillage agriculture, respectively. Cover of native plants declined from a mean of 49% in old‐growth savannas to 27% in both tree plantations and fallows, and 4% in tillage agriculture. Reduced native cover coincided with increased cover of invasive species in tree plantations (18%), fallows (18%) and tillage agriculture (3%).In analyses of community composition, tillage agriculture was most dissimilar to old‐growth savannas, while tree plantations and fallows showed intermediate dissimilarity. These compositional changes were driven partly by the loss of characteristic savanna species: 65 species recorded in old‐growth savannas were absent in other land uses. Indicator analysis revealed 21 old‐growth species, comprised mostly of native savanna specialists. Indicators of tree plantations (nine species) and fallows (13 species) were both invasive and native species, while the two indicators of tillage agriculture were invasive. As reflective of declines in savanna communities, mean native perennial graminoid cover of 27% in old‐growth savannas dropped to 9%, 7%, and 0.1% in tree plantations, fallows and tillage agriculture, respectively.Synthesis. Agricultural conversion and afforestation of old‐growth savannas in India destroys and degrades herbaceous plant communities that do not spontaneously recover on fallowed land. Efforts to conserve India's native biodiversity should encompass the country's widespread savanna biome and seek to limit conversion of irreplaceable old‐growth savannas.
more »
« less
- Award ID(s):
- 1931232
- PAR ID:
- 10487936
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Ecology
- Volume:
- 112
- Issue:
- 1
- ISSN:
- 0022-0477
- Page Range / eLocation ID:
- 98 to 109
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate models predict increases in the frequency and intensity of extreme‐weather events. The impacts of these events may be modulated by biotic agents in unpredictable ways, yet few experiments cover sufficient spatiotemporal scales to measure the interactive effects of multiple extreme events.We used 15 years of a 28‐year experiment spanning several significant droughts to investigate how rainfall, large herbivores, and soil‐engineering termites affect understorey vegetation in a semi‐arid savanna.Herbivory was the dominant influence on community structure—decreasing cover, increasing species richness, and favouring occurrence of annuals relative to perennials—but these effects were contingent on rainfall and termitaria in non‐additive (hence unpredictable) ways.A separate experiment showed that resource enrichment, mimicking the effects of termitaria, does not straightforwardly compensate for top‐down effects of herbivory.Synthesis. Our study highlights the potency of top‐down forcing in African savannas. It suggests impressive robustness to drought and underscores the value of multi‐decadal experiments for studying interactions among multiple drivers of ecosystem dynamics.more » « less
-
Abstract Ecological restoration is beneficial to ecological communities in this era of large‐scale landscape change and ecological disruption. However, restoration outcomes are notoriously variable, which makes fine‐scale decision‐making challenging. This is true for restoration efforts that follow large fires, which are increasingly common as the climate changes.Post‐fire restoration efforts, like tree planting and seeding have shown mixed success, though the causes of the variation in restoration outcomes remain unclear. Abiotic factors such as elevation and fire severity, as well as biotic factors, such as residual canopy cover and abundance of competitive understorey grasses, can vary across a burned area and may all influence the success of restoration efforts to re‐establish trees following forest fires.We examined the effect of these factors on the early seedling establishment of a tree species—māmane (Sophora chrysophylla)—in a subtropical montane woodland in Hawaiʻi. Following a human‐caused wildfire, we sowed seeds of māmane as part of a restoration effort. We co‐designed a project to examine māmane seedling establishment.We found that elevation was of overriding importance, structuring total levels of plant establishment, with fewer seedlings establishing at higher elevations. Residual canopy cover was positively correlated with seedling establishment, while cover by invasive, competitive understorey grasses very weakly positively correlated with increased seedling establishment.Our results point to specific factors structuring plant establishment following a large fire and suggest additional targeted restoration actions within this subtropical system. For example, if greater native woody recruitment is a management goal, then actions could include targeted seed placement at lower elevations where establishment is more likely, increased seeding densities at high elevation where recruitment rates are lower, and/or invasive grass removal prior to seeding. Such actions may result in faster native ecosystem recovery, which is a goal of local land managers.more » « less
-
Abstract Human impacts have led to dramatic biodiversity change which can be highly scale‐dependent across space and time. A primary means to manage these changes is via passive (here, the removal of disturbance) or active (management interventions) ecological restoration. The recovery of biodiversity, following the removal of disturbance, is often incomplete relative to some kind of reference target. The magnitude of recovery of ecological systems following disturbance depends on the landscape matrix and many contingent factors. Inferences about recovery after disturbance and biodiversity change depend on the temporal and spatial scales at which biodiversity is measured.We measured the recovery of biodiversity and species composition over 33 years in 17 temperate grasslands abandoned after agriculture at different points in time, collectively forming a chronosequence since abandonment from 1 to 80 years. We compare these abandoned sites with known agricultural land‐use histories to never‐disturbed sites as relative benchmarks. We specifically measured aspects of diversity at the local plot‐scale (α‐scale, 0.5 m2) and site‐scale (γ‐scale, 10 m2), as well as the within‐site heterogeneity (β‐diversity) and among‐site variation in species composition (turnover and nestedness).At our α‐scale, sites recovering after agricultural abandonment only had 70% of the plant species richness (and ~30% of the evenness), compared to never‐ploughed sites. Within‐site β‐diversity recovered following agricultural abandonment to around 90% after 80 years. This effect, however, was not enough to lead to recovery at our γ‐scale. Richness in recovering sites was ~65% of that in remnant never‐ploughed sites. The presence of species characteristic of the never‐disturbed sites increased in the recovering sites through time. Forb and legume cover declines in years since abandonment, relative to graminoid cover across sites.Synthesis.We found that, during the 80 years after agricultural abandonment, old fields did not recover to the level of biodiversity in remnant never‐ploughed sites at any scale. β‐diversity recovered more than α‐scale or γ‐scale. Plant species composition recovered, but not completely, over time, and some species groups increased their cover more than others. Patterns of ecological recovery in degraded ecosystems across space and long time‐scales can inform targeted active restoration interventions and perhaps, lead to better outcomes.more » « less
-
null (Ed.)Earth’s ancient grasslands and savannas—hereafter old-growth grasslands—have long been viewed by scientists and environmental policymakers as early successional plant communities of low conservation value. Challenging this view, emerging research suggests that old-growth grasslands support substantial biodiversity and are slow to recover if destroyed by human land uses (e.g., tillage agriculture, plantation forestry). But despite growing interest in grassland conservation, there has been no global test of whether old-growth grasslands support greater plant species diversity than secondary grasslands (i.e., herbaceous communities that assemble after destruction of old-growth grasslands). Our synthesis of 31 studies, including 92 timepoints on six continents, found that secondary grasslands supported 37% fewer plant species than old-growth grasslands (log response ratio = −0.46) and that secondary grasslands typically require at least a century, and more often millennia (projected mean 1,400 y), to recover their former richness. Young (<29 y) secondary grasslands were composed of weedy species, and even as their richness increased over decades to centuries, secondary grasslands were still missing characteristic old-growth grassland species (e.g., long-lived perennials). In light of these results, the view that all grasslands are weedy communities, trapped by fire and large herbivores in a state of arrested succession, is untenable. Moving forward, we suggest that ecologists should explicitly consider grassland assembly time and endogenous disturbance regimes in studies of plant community structure and function. We encourage environmental policymakers to prioritize old-growth grassland conservation and work to elevate the status of old-growth grasslands, alongside old-growth forests, in the public consciousness.more » « less
An official website of the United States government

