Abstract TheH‐κmethod (Zhu & Kanamori, 2000,https://doi.org/10.1029/1999JB900322) has been widely used to estimate the crustal thickness (H) and the ratio ofPtoSvelocities (VP/VSratio,κ) with receiver functions. However, in regions where the crustal structure is complicated, the method may produce biased results, arising particularly from dipping Moho and/or crustal anisotropy.H‐κstacking in case of azimuthal or radial anisotropy with flat Moho has been proposed but not for cases with plunging anisotropy and dipping Moho. Here we propose a generalizedH‐κmethod calledH‐κ‐c, which corrects for these effects first before stacking. We consider rather general cases, including plunging anisotropy and dipping interfaces of multiple layers, and use harmonic functions to correct for arrival time variations ofPsand its crustal multiples with back azimuth (θ). Systematic synthetic tests show that the arrival time variations can be well fitted by cosθand cos2θfunctions even for very complex crustal structures. Correcting for the back azimuthal variations significantly enhancesH‐κstacking. We verify the feasibility of theH‐κ‐c method by applying it to 40 permanent stations in various geological setting across the Mainland China. The results show clear improvement after the harmonic corrections, with clearer multiples and stronger stacking energy, as well as more reliableH‐κvalues. Large differences inH(up to 5.0 km) andκ(up to 0.09) between the new and traditional methods occur mostly in mountainous regions, where the crustal structure tends to be more complex. We caution in particular about systematic bias when the traditional method is used in the presence of dipping interfaces. The modified method is simple and applicable anywhere in the world.
more »
« less
N -Carboxyanhydrides directly from amino acids and carbon dioxide and their tandem reactions to therapeutic alkaloids
A phosgene-free method to prepareN-carboxyanhydrides from amino acids and carbon dioxide has been developed. This method is mild enough to be used in the tandem synthesis of alkaloids tryptanthrin and phaitanthrin A.
more »
« less
- Award ID(s):
- 2023955
- PAR ID:
- 10488004
- Publisher / Repository:
- RSC
- Date Published:
- Journal Name:
- Green Chemistry
- Volume:
- 24
- Issue:
- 23
- ISSN:
- 1463-9262
- Page Range / eLocation ID:
- 9245 to 9252
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Transition Metal‐Free Aroylation of Diarylmethanes with N ‐Bn‐ N ‐Boc Arylamides and N ‐AcylpyrrolesAbstract In the last 20 years, efficient transition metal catalysts for the α‐arylation of enolates have been introduced. Despite the popularity and utility of these reactions, there remains room for improvement (reduced costs, elimination of transition metals and specialized ligands). Herein is reported a general, scalable and green method for aroylation of simple diarylmethane pronucleophiles through direct acyl C−N cleavage ofN‐Bn−N‐Boc arylamides andN‐acylpyrroles under transition metal‐free conditions. Importantly, a 1 : 1 ratio of the amide to the pronucleophile is employed. Unlike use of Weinreb amides, this method avoids preformed organometallics (organolithium and Grignard reagents) and does not employ cryogenic temperatures, which are difficult and costly to achieve on scale. The operationally simple protocol provides straightforward access to a variety of sterically and electronically diverse 1,2,2‐triarylethanones, a group of compounds with high‐value in medicinal chemistry. magnified imagemore » « less
-
Abstract In 1974, Sue Herring described the relationship between two important performance variables in the feeding system, bite force and gape. These variables are inversely related, such that, without specific muscular adaptations, most animals cannot produce high bite forces at large gapes for a given sized muscle. Despite the importance of these variables for feeding biomechanics and functional ecology, the paucity of in vivo bite force data in primates has led to bite forces largely being estimated through ex vivo methods. Here, we quantify and compare in vivo bite forces and gapes with output from simulated musculoskeletal models in two craniofacially distinct strepsirrhines:Eulemur, which has a shorter jaw and slower chewing cycle durations relative to jaw length and body mass compared toVarecia. Bite forces were collected across a range of linear gapes from 16 adult lemurs (suborder Strepsirrhini) at the Duke Lemur Center in Durham, North Carolina representing three species:Eulemur flavifrons(n = 6; 3F, 3M),Varecia variegata(n = 5; 3F, 2M), andVarecia rubra(n = 5; 5F). Maximum linear and angular gapes were significantly higher forVareciacompared toEulemur(p = .01) but there were no significant differences in recorded maximum in vivo bite forces (p = .88). Simulated muscle models using architectural data for these taxa suggest this approach is an accurate method of estimating bite force‐gape tradeoffs in addition to variables such as fiber length, fiber operating range, and gapes associated with maximum force. Our in vivo and modeling data suggestVareciahas reduced bite force capacities in favor of absolutely wider gapes compared toEulemurin relation to their longer jaws. Importantly, our comparisons validate the simulated muscle approach for estimating bite force as a function of gape in extant and fossil primates.more » « less
-
Abstract Until recently, precise genome editing has been limited to a few organisms. The ability of Cas9 to generate double stranded DNA breaks at specific genomic sites has greatly expanded molecular toolkits in many organisms and cell types. Before CRISPR‐Cas9 mediated genome editing,P. patenswas unique among plants in its ability to integrate DNA via homologous recombination. However, selection for homologous recombination events was required to obtain edited plants, limiting the types of editing that were possible. Now with CRISPR‐Cas9, molecular manipulations inP. patenshave greatly expanded. This protocol describes a method to generate a variety of different genome edits. The protocol describes a streamlined method to generate the Cas9/sgRNA expression constructs, design homology templates, transform, and quickly genotype plants. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Constructing the Cas9/sgRNA transient expression vector Alternate Protocol 1: Shortcut to generating single and pooled Cas9/sgRNA expression vectors Basic Protocol 2: Designing the oligonucleotide‐based homology‐directed repair (HDR) template Alternate Protocol 2: Designing the plasmid‐based HDR template Basic Protocol 3: Inducing genome editing by transforming CRISPR vector intoP. patensprotoplasts Basic Protocol 4: Identifying edited plants.more » « less
-
Abstract We begin with a treatment of the Caputo time‐fractional diffusion equation, by using the Laplace transform, to obtain a Volterra integro‐differential equation. We derive and utilize a numerical scheme that is derived in parallel to the L1‐method for the time variable and a standard fourth‐order approximation in the spatial variable. The main method derived in this article has a rate of convergence ofO(kα + h4)foru(x,t) ∈ Cα([0,T];C6(Ω)),0 < α < 1, which improves previous regularity assumptions that requireC2[0,T]regularity in the time variable. We also present a novel alternative method for a first‐order approximation in time, under a regularity assumption ofu(x,t) ∈ C1([0,T];C6(Ω)), while exhibiting order of convergence slightly more thanO(k)in time. This allows for a much wider class of functions to be analyzed which was previously not possible under the L1‐method. We present numerical examples demonstrating these results and discuss future improvements and implications by using these techniques.more » « less
An official website of the United States government

