skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Notebooks for combining the National Water Model results/inputs with observations from SNOTEL and MODIS at SNOTEL sites
This resource includes Jupyter Notebooks that combine (merge) model results with observations. There are four folders: - NWM_SnowAssessment: This folder includes codes required for combining model results with observations. It also has an output folder that contains outputs of running five Jupyter Notebooks within the code folder. The order to run the Jupyter Notebooks is as follows. First run Combine_obs_mod_[*].ipynb where [*] is P (precipitation), SWE (snow water equivalent), TAir (air temperature), and FSNO (snow covered area fraction). This combines the model outputs and observations for each variable. Then, run Combine_obs_mod_P_SWE_TAir_FSNO.ipynb. - NWM_Reanalysis: This folder contains the National Water Model version 2 retrospective simulations that were retrieved and pre-processed at SNOTEL sites using https://doi.org/10.4211/hs.3d4976bf6eb84dfbbe11446ab0e31a0a and https://doi.org/10.4211/hs.1b66a752b0cc467eb0f46bda5fdc4b34. - SNOTEL: This folder contains preprocessed SNOTEL observations that were created using https://doi.org/10.4211/hs.d1fe0668734e4892b066f198c4015b06. - GEE: This folder contains MODIS observations that we downloaded using https://doi.org/10.4211/hs.d287f010b2dd48edb0573415a56d47f8. Note that the existing CSV file is the merged file of the downloaded CSV files.  more » « less
Award ID(s):
1664061
PAR ID:
10488109
Author(s) / Creator(s):
;
Publisher / Repository:
HydroShare
Date Published:
Subject(s) / Keyword(s):
Google Earth Engine MODIS Snow water equivalent NDSI SNOTEL Snow covered area fraction National Water Model
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset of 7304 aluminum grain boundaries provides comprehensive coverage of the 5D space of crystallographic character. The dataset and some of its characteristics are described in detail in https://doi.org/10.1016/j.actamat.2022.118006. The dataset here includes a zip file with all 7304 minimum energy grain boundary structure files, which are minimized dump files from LAMMPS. The dump files only include atoms +/- 15 angstroms from the grain boundary plane. The CSV file contains information about all 7304 grain boundaries, including information about the crystallographic character and a few computed properties. A README file provides a description of the columns of the CSV file. 
    more » « less
  2. This dataset contains raw data, processed data, and the codes used for data processing in our manuscript from our Fourier-transform infrared (FTIR) spectroscopy, Nuclear magnetic resonance (NMR), Raman spectroscopy, and X-ray diffraction (XRD) experiments. The data and codes for the fits of our unpolarized Raman spectra to polypeptide spectra is also included. The following explains the folder structure of the data provided in this dataset, which is also explained in the file ReadMe.txt. Browsing the data in Tree view is recommended. Folder contents Codes Raman Data Processing: The MATLAB script file RamanDecomposition.m contains the code to decompose the sub-peaks across different polarized Raman spectra (XX, XZ, ZX, ZZ, and YY), considering a set of pre-determined restrictions. The helper functions used in RamanDecomposition.m are included in the Helpers folder. RamanDecomposition.pdf is a PDF printout of the MATLAB code and output. P Value Simulation: 31_helix.ipynb and a_helix.ipynb: These two Jupyter Notebook files contain the intrinsic P value simulation for the 31-helix and alpha-helix structures. The simulation results were used to prepare Supplementary Table 4. See more details in the comments contained. Vector.py, Atom.py, Amino.py, and Helpers.py: These python files contains the class definitions used in 31_helix.ipynb and a_helix.ipynb. See more details in the comments contained. FTIR FTIR Raw Transmission.opj: This Origin data file contains the raw transmission data measured on single silk strand and used for FTIR spectra analysis. FTIR Deconvoluted Oscillators.opj: This Origin data file was generated from the data contained in the previous file using W-VASE software from J. A. Woollam, Inc. FTIR Unpolarized MultiStrand Raw Transmission.opj: This Origin data file contains the raw transmission data measured on multiple silk strands. The datasets contained in the first two files above were used to plot Figure 2a-b and the FTIR data points in Figure 4a, and Supplementary Figure 6. The datasets contained in the third file above were used to plot Supplementary Figure 3a. The datasets contained in the first two files above were used to plot Figure 2a-b, FTIR data points in Figure 4a, and Supplementary Figure 6. NMR Raw data files of the 13C MAS NMR spectra: ascii-spec_CP.txt: cross-polarized spectrum ascii-spec_DP.txt: direct-polarized spectrum Data is in ASCII format (comma separated values) using the following columns: Data point number Intensity Frequency [Hz] Frequency [ppm] Polypeptide Spectrum Fits MATLAB scripts (.m files) and Helpers: The MATLAB script file Raman_Fitting_Process_Part_1.m and Raman_Fitting_Process_Part_2.m contains the step-by-step instructions to perform the fitting process of our calculated unpolarized Raman spectrum, using digitized model polypeptide Raman spectra. The Helper folder contains two helper functions used by the above scripts. See the scripts for further instruction and information. Data aPA.csv, bPA.csv, GlyI.csv, GlyII.csv files: These csv files contain the digitized Raman spectra of poly-alanine, beta-alanine, poly-glycine-I, and poly-glycine-II. Raman_Exp_Data.mat: This MATLAB data file contains the processed, polarized Raman spectra obtained from our experiments. Variable freq is the wavenumber information of each collected spectrum. The variables xx, yy, zz, xz, zx represent the polarized Raman spectra collected. These variables are used to calculate the unpolarized Raman spectrum in Raman_Fitting_Process_Part_2.m. See the scripts for further instruction and information. Raman Raman Raw Data.mat: This MATLAB data file contains all the raw data used for Raman spectra analysis. All variables are of MATLAB structure data type. Each variable has fields called Freq and Raw, with Freq contains the wavenumber information of the measured spectra and Raw contains 5 measured Raman signal strengths. Variable XX, XZ, ZX, ZZ, and YY were used to plot and sub-peak analysis for Figure 2c-d, Raman data points in Figure 4a, Figure 5b, Supplementary Figure 2, and Supplementary Figure 7. Variable WideRange was used to plot and identify the peaks for Supplementary Figure 3b. X-Ray X-Ray.mat: This MATLAB data file contains the raw X-ray data used for the diffraction analysis in Supplementary Figure 5. 
    more » « less
  3. This dataset provides segregation energy spectra information for cobalt solute in 7272 aluminum grain boundaries that span the 5D space of crystallographic character. The dataset and some of its characteristics are described in detail in https://doi.org/10.1016/j.actamat.2024.120448. The information about the segregation energy spectra are included in a CSV file. Each GB is identified by a computeID that is listed in the CSV file. The crystallographic character and selected properties for each GB, as well as its structure, are available in another dataset at https://doi.org/10.17632/4ykjz4ngwt, and which is described in an article at https://doi.org/10.1016/j.actamat.2022.118006. Note that the A README file provides a description of the columns of the CSV file. 
    more » « less
  4. The radon isotope and stable water isotope data for Coal Creek Watershed, Colorado, consists of d2H, d18O, and 222Rn values from samples collected at 8 stream location along Coal Creek, samples from 7 groundwater springs within the watershed, and precipitation isotope samples collected by Next Generation Water Observing System (NGWOS) from a collector within the watershed. All stream and spring samples were collected between June and October, 2021, and precipitation isotope samples were collected between November 2020 and September 2021. These data were collected to evaluate how groundwater contributions to Coal Creek originating from a fractured hillslope and alluvial fan respond to summer monsoon rains and seasonal drying. Understanding of groundwater-surface water interactions in montane systems in critical for the future of water availability in the Western US as groundwater contributions are expected to become more important for sustaining summer stream flows. This data package contains: (1) a csv of all radon samples; (2) a csv of all stream and spring isotope samples; (3) a csv of precipitation isotope samples; and (4) a csv of locations for each sampling site. The dataset additionally includes a file-level metadata (flmd.csv) file that lists each file contained in the dataset with associated metadata; and a data dictionary (dd.csv) file that contains column/row headers used throughout the files along with a definition, units, and data type. 
    more » « less
  5. {"Abstract":["Data files were used in support of the research paper titled \u201cMitigating RF Jamming Attacks at the Physical Layer with Machine Learning<\/em>" which has been submitted to the IET Communications journal.<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nAll data was collected using the SDR implementation shown here: https://github.com/mainland/dragonradio/tree/iet-paper. Particularly for antenna state selection, the files developed for this paper are located in 'dragonradio/scripts/:'<\/p>\n\n'ModeSelect.py': class used to defined the antenna state selection algorithm<\/li>'standalone-radio.py': SDR implementation for normal radio operation with reconfigurable antenna<\/li>'standalone-radio-tuning.py': SDR implementation for hyperparameter tunning<\/li>'standalone-radio-onmi.py': SDR implementation for omnidirectional mode only<\/li><\/ul>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nAuthors: Marko Jacovic, Xaime Rivas Rey, Geoffrey Mainland, Kapil R. Dandekar\nContact: krd26@drexel.edu<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nTop-level directories and content will be described below. Detailed descriptions of experiments performed are provided in the paper.<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nclassifier_training: files used for training classifiers that are integrated into SDR platform<\/p>\n\n'logs-8-18' directory contains OTA SDR collected log files for each jammer type and under normal operation (including congested and weaklink states)<\/li>'classTrain.py' is the main parser for training the classifiers<\/li>'trainedClassifiers' contains the output classifiers generated by 'classTrain.py'<\/li><\/ul>\n\npost_processing_classifier: contains logs of online classifier outputs and processing script<\/p>\n\n'class' directory contains .csv logs of each RTE and OTA experiment for each jamming and operation scenario<\/li>'classProcess.py' parses the log files and provides classification report and confusion matrix for each multi-class and binary classifiers for each observed scenario - found in 'results->classifier_performance'<\/li><\/ul>\n\npost_processing_mgen: contains MGEN receiver logs and parser<\/p>\n\n'configs' contains JSON files to be used with parser for each experiment<\/li>'mgenLogs' contains MGEN receiver logs for each OTA and RTE experiment described. Within each experiment logs are separated by 'mit' for mitigation used, 'nj' for no jammer, and 'noMit' for no mitigation technique used. File names take the form *_cj_* for constant jammer, *_pj_* for periodic jammer, *_rj_* for reactive jammer, and *_nj_* for no jammer. Performance figures are found in 'results->mitigation_performance'<\/li><\/ul>\n\nray_tracing_emulation: contains files related to Drexel area, Art Museum, and UAV Drexel area validation RTE studies.<\/p>\n\nDirectory contains detailed 'readme.txt' for understanding.<\/li>Please note: the processing files and data logs present in 'validation' folder were developed by Wolfe et al. and should be cited as such, unless explicitly stated differently. \n\tS. Wolfe, S. Begashaw, Y. Liu and K. R. Dandekar, "Adaptive Link Optimization for 802.11 UAV Uplink Using a Reconfigurable Antenna," MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM), 2018, pp. 1-6, doi: 10.1109/MILCOM.2018.8599696.<\/li><\/ul>\n\t<\/li><\/ul>\n\nresults: contains results obtained from study<\/p>\n\n'classifier_performance' contains .txt files summarizing binary and multi-class performance of online SDR system. Files obtained using 'post_processing_classifier.'<\/li>'mitigation_performance' contains figures generated by 'post_processing_mgen.'<\/li>'validation' contains RTE and OTA performance comparison obtained by 'ray_tracing_emulation->validation->matlab->outdoor_hover_plots.m'<\/li><\/ul>\n\ntuning_parameter_study: contains the OTA log files for antenna state selection hyperparameter study<\/p>\n\n'dataCollect' contains a folder for each jammer considered in the study, and inside each folder there is a CSV file corresponding to a different configuration of the learning parameters of the reconfigurable antenna. The configuration selected was the one that performed the best across all these experiments and is described in the paper.<\/li>'data_summary.txt'this file contains the summaries from all the CSV files for convenience.<\/li><\/ul>"]} 
    more » « less