We explore the complexity of the signal repertoire and sequences of behavioural interactions involved in pair formation in
Animals often mimic the behaviours or signals of conspecifics of the opposite sex while courting. We explored the potential functions of a novel female-like signal type in the courtship displays of male Enchenopa treehoppers. In these plant-feeding insects, males produce plant-borne vibrational advertisement signals, to which females respond with their own duetting signals. Males also produce a signal type that resembles the female duetting responses. We experimentally tested whether this signal modifies the behaviour of receivers. First, we tested whether the female-like signal would increase the likelihood of a female response. However, females were as likely to respond to playbacks with or without them. Second, we tested whether the female-like signal would inhibit competing males, but males were as likely to produce displays after playbacks with or without them. Hence, we found no evidence that this signal has an adaptive function, despite its presence in the courtship display, where sexual selection affects signal features. Given these findings, we also explored whether the behavioural and morphological factors of the males were associated with the production of the female-like signal. Males that produced this signal had higher signalling effort (longer and more frequent signals) than males that did not produce it, despite being in worse body condition. Lastly, most males were consistent over time in producing the female-like signal or not. These findings suggest that condition-dependent or motivational factors explain the presence of the female-like signal. Alternatively, this signal might not bear an adaptive function, and it could be a way for males to warm up or practice signalling, or even be a by-product of how signals are transmitted through the plant. We suggest further work that might explain our puzzling finding that a signal in the reproductive context might not have an adaptive function.
more » « less- Award ID(s):
- 1855962
- PAR ID:
- 10488212
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Evolutionary Biology
- Volume:
- 37
- Issue:
- 1
- ISSN:
- 1420-9101
- Format(s):
- Medium: X Size: p. 110-122
- Size(s):
- p. 110-122
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Enchenopa binotata treehoppers, which communicate via plant-borne vibrational signals, and whose pair formation involves prolonged male-female duetting interactions. We recorded these interactions using laser vibrometry and video assays. In males, we report two phases of signalling: a searching phase in which males use a basic repertoire to solicit engagement from females; and a more complex phase incorporating additional signal types and elements males used once engaged by females. In females, we report a novel three-stage process of selective cooperation with males, as well as a novel signal type that was necessary but not sufficient for copulation to occur. These three stages include active duetting with a male that was necessary for him to locate and mount females; the novel signal that females produce after continued mounted duetting that prompts the male to attempt genital coupling; and the female actively allowing coupling. We discuss implications of our observations for these insects’ cognitive abilities in terms of the memory and selective attention required to sustain signalling interactions and proceed along the decision-making stages of mate choice. Using attention to detail as an aid to discovery, we aim to promote research on how such animals express such capabilities. -
Abstract Temperature influences the expression of a wide range of behavioral traits in ectotherms, including many involved in the initiation of pair formation and mating. Although opportunities to mate are thought to be greatest when male and female activity overlap, sex‐specific behaviors and physiology could result in mismatched thermal optima for male and female courtship. Here, we investigate how conflicts in the thermal sensitivity of male and female courtship activity affect patterns of mating across temperatures in
Enchenopa binotata treehoppers (Hemiptera: Membracidae). These plant‐feeding insects coordinate mating with plant‐borne vibrational signals exchanged in male–female duets prior to pair formation. We manipulated temperature across an ecologically relevant range (18–36ºC) and tested the likelihood of individual male and femaleE. binotata to engage in courtship activity using vibrational playbacks. We then staged male–female mating interactions across the same temperature range and quantified the thermal sensitivity of mating‐related behaviors across stages of mating. Specifically, we measured the timing of duetting, the likelihood for key pre‐copulatory behaviors to occur, whether the pair mated, and copulation duration. We found sex‐specific thermal sensitivity in courtship activity: Males showed a clear peak of activity at intermediate temperatures (27–30ºC), while females showed highest activity at the hotter thermal extreme. Mating rates, courtship duets, and copulatory attempts were less likely to occur at thermal extremes. Also, duetting occurred earlier and copulation was shortest at higher temperatures. Overall, our data suggest that sexes differ in how temperature affects mating‐related activity and some processes involved in mate coordination may be more sensitive than others across variable thermal environments. -
Many animal species, including insects, are capable of acoustic duetting, a complex social behavior in which males and females tightly control the rate and timing of their courtship song syllables relative to each other. The mechanisms underlying duetting remain largely unknown across model systems. Most studies of duetting focus exclusively on acoustic interactions, but the use of multisensory cues should aid in coordinating behavior between individuals. To test this hypothesis, we develop Drosophila virilis as a new model for studies of duetting. By combining sensory manipulations, quantitative behavioral assays, and statistical modeling, we show that virilis females combine precisely timed auditory and tactile cues to drive song production and duetting. Tactile cues delivered to the abdomen and genitalia play the larger role in females, as even headless females continue to coordinate song production with courting males. These data, therefore, reveal a novel, non-acoustic, mechanism for acoustic duetting. Finally, our results indicate that female-duetting circuits are not sexually differentiated, as males can also produce ‘female-like’ duets in a context-dependent manner.
-
Abstract Biologists have long been interested in intransitive preferences: circular preferences in which options cannot be ranked and no single option dominates, similar to a game of rock‐paper‐scissors. Intransitive preferences violate rational decision‐making, an assumption made by models of evolution by mate choice. Despite its potential importance in the study of sexual selection, few studies have tested for intransitive preferences. Even fewer have asked whether females differ in whether they choose mates transitively or intransitively and what factors might predict (in)transitive choice. Though intransitive choice is thought to be more common as options become more complex, this prediction is untested in animals. To fill this gap, we tested whether female
Xiphophorus nigrensis swordtails can rank digitally animated males differing in size, courtship intensity, or both size and courtship intensity, and whether female responses were predicted by a female's age. Females choosing among males that varied only in size showed higher than expected levels of intransitivity, whereas females choosing among males that varied in their courtship or both properties did not. Older females were more likely to be irrational than younger females when evaluating male size, suggesting that experience modifies transitive decision‐making processes. These results show that mate choice irrationality may vary by a female's experience and the signal characteristics during decision‐making. -
Abstract Female competitive behaviors during courtship can have substantial fitness consequences, yet we know little about the physiological and social mechanisms underlying these behaviors—particularly for females of polygynous lek mating species. We explored the hormonal and social drivers of female intersexual and intrasexual behavior during courtship by males in a captive population of Indian peafowl. We investigated whether (1) female non-stress induced circulating estradiol (E2) and corticosterone (CORT) levels or (2) female dominance status in a dyad predicts female solicitation behavior. We also tested whether female circulating E2 and CORT predict dominant females’ aggressive behaviors toward subordinate females in the courtship context. Our findings demonstrate that females with higher levels of circulating E2 as well as higher levels of circulating CORT solicit more courtships from males. Dominant females also solicit more courtships from males than subordinate females. Female intrasexual aggressive behaviors during courtship, however, were not associated with circulating levels of E2 or CORT. Overall, we conclude that circulating steroid hormones in conjunction with social dominance might play a role in mediating female behaviors associated with competition for mates. Experimental manipulation and measures of hormonal flexibility throughout the breeding season in relation to competitive and sexual behaviors will be necessary to further examine the link between hormonal mechanisms and female behavior in polygynous lekking systems.